PublicKey
Cryptography

How mathematics allows us to send
our most secret messages quite openly
without revealing their contents -
except only to those who are supposed
to read them

The mathematical ideas needed to follow the
explanation arerelatively smple. Asahelp for those
who might need areminder about some of theideas
or words, additional material has been added at the
end to givealittlemore detail about certain points.
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The headings in the right-hand margin indicate where
detailed help on that particular item can be found.

To save unnecessary repetition, throughout this topic, the word ‘number’
is to be taken to mean only positive whole numbers (and zero).

For many centuries secret messages had to be transmitted by using a
key and/or method known only to those who were meant to share in the
contents of those messages. Clearly, with such systems, there were always
difficulties in distributing these keys or systems so that they did not fall
into the wrong hands.

A breakthrough was made (in 1977) by Rivest, Shamir and Adleman
(which is why the initials RSA are often attached to this system), when
they devised a sytem using two keys. One key is used to put the message
into cipher, and this key can be broadcast to the world so there is no
distribution problem. This key is known as the Public Key. In addition to
the Public Key another number (known as the modulus) is also published.
The other Key, which is needed to decipher the message, is kept secret
by the individual(s) for whom the message(s) is, or are, intended.

The system, based on some relatively simple ideas in modulo
arithmetic, will be explained here by means of a numerical example,
using only the smallest numbers it is possible to use. First of all it is
necessary to set up the necessary numbers which will be used, by following
this routine.

General Routine Example
1. Choose two prime

numbersp,q p=2 =5
2.Set m=pxq m=2x5=10
3.Set A=(p-1)x(q-1) A=1x4=4

4. Choose a number E which
isless than A and has no

factors in common with A. E=3
5. Find anumber D so that
(D x E) - 1isamultiple of A. D=7since (3x7)-1=20

E (= 3) isused to Encipher the message and is published.

m (= 10) is the modulus and is used to do the division where a remainder
isrequired and is also published.
Inthisvery simplecase, 10 iseasy to use since the remainder on division
by 10 must be the last digit of the number being divided.

D (=7) is used to Decipher the message and is not published.

modulo
arithmetic
page 6

prime
numbers
page 11

multiple
page 15

© Frank Tapson 1998 Public Key Cryptography ~ 2



Now let us use the values just worked out to put a message into cipher.

The numbers we work with must be one less than the value of m. In this
case m = 10 means we cannot use a number bigger than 9. As we shall be
working, initially, with the values of the individual letters, this means we
cannot have morethan 9 letters. Since the normal alphabet contains 26 |etters,
we need to use a sub-set of the alphabet.

So, being limited to asmall ‘alphabet’ of only 9 letters, it makes good sense
to choose those which are most commonly used -

A D E H N O R S T
with each taking the corresponding numerical values
1 2 3 4 5 6 7 8 9

For our message we will use the single word “DOOR”.

First write out the message in plain text -

D @] 0] R
change all letters into their corresponding values -
2 6 6 7
raise all values to the power of E (= 3) -
28 63 6° 73
which produces the values -
8 216 216 343
Finally find the remainder when each of thoseis divided by m (= 10) -
8 6 6 3

So the final message in cipher is 8663

To decipher, asimilar process is used except that D is used in place of E in
finding the power.

Write out the message in its cipher form -

8 6 6 3
raise all values to the power of D (=7) -
8’ 6’ 67 37

which is within range of a calculator and produces the values -
2097152 279936 279936 2187
Find the remainder when divided by m (= 10) -

2 6 6 7
and change those values back into letters -
D @] @] R

[One for you. Using the same values for D and m decipher 5 7 2 9]

powers
page 12
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What has been done so far offers no security at all for two reasons.

1. The values of E and m have to be made public and, in this case,
they are so small it would be easy to see that since m = 10, the
p and g must be 2 and 5. From that the value of A could be
found and, since E is aso known, then D could be found.

However, this defect can be overcome by making p and q very
very large so that the factoring of mis next to impossible. And
that is done in practice.

2. A much bigger fault isthat putting only one letter at atimeinto
cipher must mean that each letter will always have the same
value in its cipher form throughout the message. This
immediately makesthefinal cipher message breakable by using
a simple frequency count.

This defect is overcome by grouping letters (and their values)
together and putting each complete group into cipher.

To provide an example of thisgrouping ideawe need to work with new values
since, as we have already seen, m must be bigger than the largest value to be
worked on.

So, now we use m= 115 E=83 D=35
[One for you. What values of p and q were used?|

Using the same message as before: “DOOR”, its letter values are 2667.
Working in groups of two, thissplitsinto 26 and 67 and it isthose two numbers
which are acted on by the ciphering process.

Each has to be raised to the power of E (= 83) and then the remainder found
after division by m (= 115)
So we need to evaluate: 262 (mod 115) and 67% (mod 115)

Directly calculating the values of large powers is beyond the capability of
most calculators, though some can do it if a modulo arithmetic is involved,
and so can some computer-based cal cul ators. However, the cal cul ations needed
here can be done on a hand-held calculator using a particular technique.

Whatever way it is done, the answers required are
26 = 16 (mod 115)
and
678 = 28 (mod 115)
and the final cipher message is 16 28
Notice how the clue of the doubled up letters in the middle has gone.

Deciphering would require the evaluation of 16*° and 28%* using the same
value of mfor the divider.

[One for you. Using the same D,m decipher 43 52]
Note thisis still a completely insecure system because

e m=115is easy to factorise.
Thisisovercomein real life by using very large primes.

» even taking 2 letters at a time it would be vulnerable to a
frequency count.
Thisis overcome by using very much larger groups.

But doing both of those requires the use of a computer and specially written
programs.

large
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Signatures

In this system, it is intended that a message is put into cipher using E and
deciphered using D. But in fact, the values of E and D are interchangeable in
their function. That is, it is also possible put a message into cipher with D
and decipher with E. Thismight seem at first sight to be of no use. But in fact
it has a very important function and is used in authenticating messages.

Consider two correspondents, Sean and Nora. Each has their own (different)
E and mvalues which are public and known to everyone. Each has their own
D value which is known only to themselves. Sean is sending a message to
Noraand it isimportant that Nora can know without any doubt that the message
does indeed come from Sean. This (very much simplified) is one way it can
be done.

First of all Sean writes out the message:

NORA SEND SARA TEN ROSES SEAN SEAN
changes it into numbers:

5671 8352 8171 935 76838 8315 8315
enciphers his second signature only using his (private) D value (and m):

5671 8352 8171 935 76838 8315 9761
enciphersthe complete message using Nora's publicly known E and mvalues:

2889 4751 6413 214 31924 4223 6587
On receiving it, Nora uses her private D (and m) values to produce:

NORA SEND SARA TEN ROSES SEAN TROA

She extracts the ‘ gibberish® TROA on the end and, knowing that the message
IS supposed to be from Sean, she uses his E value on it (9761) to get:

NORA SEND SARA TEN ROSES SEAN SEAN
and the only one who could have made that possible is Sean (or should be!)

Trivial? Yesthat is, but think about a message from Sean to his bank telling
them to transfer 10,000 pounds from his account to Sara’s - it is no longer
trivial then!

[One for you. What is the weakness of the signature system given here?)

Asachallengetry to decipher this message which was encrypted with E = 67
and m=111.

86 91 37 109 21 22 86 77 69 17 19 17

There is a signature in the message which was encrypted by a sender whose
public keys are E = 41 and m = 119. What is the sender's name?

For the really ambitious, try your cipher-breaking skills on this message.

All 1 will tell youisthat it usesthe same 9-letter al phabet as before, and that
neither p nor g contains more than 2 digits; there were 18 letters in the
original message, enciphered in groups of two.

156 326 34 33 333 292 229 199 169
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modulo arithmetic

Modulo arithmetic is also known as clock arithmetic, or remainder arithmetic,
and there is a very good reason for both of those names as we shall see.
Modulo arithmetic is a form of arithmetic which uses only a limited set of the
whole numbers {0, 1,2,3,4,5,6,7...... }. Itis always defined by the size of
the limited set to be used, and that size is called the modulus.
A modulus of n means that the first n elements of the whole-number set must
be used.
For example: A modulus of 3 meansuse0, 1, 2
A modulus of 6 meansuse0, 1, 2, 3, 4,5
A modulus of 20 meansuse0, 1, 2,3,4,5....17,18, 19
Note
» The set to be used always starts with 0
* No numbers may be left out
» The set ends with the number which is 1 less than the modulus

To do arithmetic with a limited set of numbers requires that we re-look at what
the various operations of arithmetic mean.

addition
In our ‘normal’ system, adding one number to another can be done by having
the numbers in an ordered line, starting at one number, counting on the amount
of the other number, and recording the number we finish at.
For example: 4 + 5 can be modelled as

01 2 3 45 6 7 8 9 10 11 12 13

N N
Start count on 5 and Finish

In modulo arithmetic the equivalent arrangement of the number line requires
the same limited set of numbers to be repeated
For example: In modulo 5
O 1 2 3 401 2 3 4 0 1 2 3
) 0
Start count on 5 and Finish
or in modulo 6
0O 1 2 3 45 012 3 4501
) 0
Start count on 5 and Finish
Note
« The answer clearly depends upon the size of the modulus
» The starting number must be less than the modulus (for the moment)
« The number of places to be counted on can be bigger than the modulus
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modulo arithmetic (contd)

Since the ‘number line’ in modulo arithmetic requires the same limited set of
numbers to be repeated it makes good sense to use ‘number circles’ like this -

0 0 0
5
4 1 1
3 1
4 2
3 2
2 3
modulo 4 modulo 5 modulo 6

Reminding us, as they do, of clock faces gives rise to the name clock arithmetic.
They can be seen to work for addition exactly like the number line did, provided
only that we remember to move clockwise round the circles. That is, in the
direction in which the numbers are increasing.

Next we look at the problem of what to do with numbers that are bigger than, or
equal to, the modulus. One way it can be done is by thinking of them in relation
to the appropriate size of circle.
For example: What is6 + 8 in modulo 5?

6 =0+ 6 s0, starting at 0 and counting on 6 placesfinishesat 1

8 =0+ 8 s0, starting at 0 and counting on 8 places finishes at 3

And 6 + 8 becomes 1+ 3 in module5 whichis4.
Another way it can be done is by first adding the given numbers (6 + 8) in the
usual way (= 14) and then changing the answer into modulo 5

14 =0+ 14 so, starting at 0 and counting on 14 placesfinishes at 4

However it is done it is now possible to make addition tables for this arithmetic.

modulo 4 modulo 5 modulo 6

+/0 1 2 3 +/ 0 1 2 3 4 +/ 0 1 2 3 4 5
0j0 1 2 3 000 1 2 3 4 00 1 2 3 4 5
111 2 3 0 111 2 3 4 0 1/1 2 3 4 5 0
212 3 0 1 202 3 4 0 1 212 3 45 0 1
33 01 2 3] 3401 2 3] 34501 2
414 0 1 2 3 4/4 5 0 1 2 3

55 01 2 3 4

Note how well patterned these tables are, so much so that it is easy to write an
addition table for any modulus.

[One for you. Write addition tables for modulo 7 and modulo 8]
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modulo arithmetic (contd)

multiplication
As with addition, we must first see how multiplication works in ‘normal’ arithmetic.
Consider the statement 3 x 4
This means, “put together 3 lots of 4” (or 4 lots of 3)
In other words, 3 x 4 is a short way of writing 4 + 4 + 4 (or 3+ 3 + 3 +3)
On the number line, 4 + 4 + 4 can be modelled as

0O 1 2 3 45 6 7 8 9 10 11 12 13 14 15
N +4 N +4 0 +4 0
Start Finish
And we can see that the answer is 12 (which is hardly a surprise!)
To do the same sum in modulo arithmetic needs the modulus to be stated.
: : 0
We will evaluate 3 x 4 in modulo 5 by
counting 4 + 4 + 4 on a modulo 5 clock 4 1
First, 4 + 4 takesusto 3
then, 3+ 4 takesusto 2
S0,3 x4 (mod5)is 2
[One for you. Count 3 + 3 + 3 + 3 on the same clock]

using remainders
It is awkward working in modulo arithmetic and having to refer to the tables any
more than necessary. It is much easier to work within our ‘ordinary’ number
system and change answers into their modulo arithmetic equivalent.

Suppose we want 4 x 5 in modulo 6
We know that 4 x 5 = 20, but what is it in modulo 67
Thinking of the modulo 6 clock, starting at 0, every time we
move 6 places we get back to 0
So, 6, 12, 18 will all get us back to 0,
which leaves only 2 places more to get to 20
This is the same as saying,
“Count in 6's and stop when you are about go past
the number you have (in this case 20), then
whatever you have left (in this case 2) will be the
number you want.”
Or, in a much shorter phrase:
“Divide by 6 and keep the remainder.”
20 + 6 = 3 remainder 2
It is this ‘trick’ which gives modulo arithmetic its other name of
remainder arithmetic
Formally it is written:
20 =2 (mod 6)
Note the symbol is = which is read as “is congruent to”
and not = which is read as “equals”

remainder
page 15
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modulo arithmetic (contd)

Using remainders we can now write out some multiplication tables for this
arithmetic.

modulo 4 modulo 5 modulo 6

X0 1 2 3 X0 1 2 3 4 X0 1 2 3 45
0|0 0 0 O 0/0 0 00O 0j]0 0 OO OO
10 1 2 3 110 1 2 3 4 1/0 1 2 3 4 5
210 2 0 2 20 2 4 1 3 210 2 4 0 2 4
310 3 21 3]0 3 1 4 2 3]0 30 3 0 3
410 4 3 2 1 410 4 2 0 4 2

510 56 4 3 2 1

The first thing to notice is that the tables are completely symmetrical about the
leading diagonal (top left to bottom right) which demonstrates how modulo
multiplication is commutative (3 x 4 = 4 x 3 etc.) just as ‘normal’ multiplication is.
We now come to our first problem with this arithmetic.
Consider the equation 3x=1
To find the value of X we need to find a number which, on
being multiplied by 3 gives the answer 1
With our ‘ordinary’ number system we would immediately say
that the answer is 1 + 3 or 1/3 but modulo arithmetic does not
admit fractions and we must refer to the appropriate
multiplication tables.
Inmodulo 4: 3x3=1s0 Xx=3
Inmodulo 5: 3x2=1s0 Xx=2
In modulo 6: no solution can be found,
since 3 x X equals either 0 or 3 (!)
If the equation is changed to 3x = 3 then solutions can be
found in modulo 4 and 5 but, in modulo 6 we have
3x1=3 3x3=3 3x5=3
So there are three solutions: 1, 3 and 5
And thus we find that in modulo arithmetic, a simple equation
might have
* no solution
* one solution
» several solutions
Rules can be given to summarise this, which allow us to know
in advance, whether or not a given equation can be solved
for any given modulus, and how many solutions it might have.
But perhaps the most useful thing to know is that, if the
modulus is prime, then all possible equations will have a
unique solution; that is, there will be one, and only one,
solution.

commutative
page 15

[One for you. Write out the modulo 8 multiplication table.]
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powers in modulo arithmetic

Working with remainders, as we did to develop the multiplication tables, it easy to
write out tables to give the values of X x> X* x* X* and so on.
Here are the tables for modulo 4, 5 and 6

modulo 4 modulo 5 modulo 6
X[ x? x® x* x° X[ x2 x3 x* x° X|[x2 x® x* x°
0|0 0 0 O 0j0 0 0 O 00 0 OO
11 1 1 1 111 1 1 1 110 1 1 1
2/0 0 0 O 24 3 1 2 214 2 4 2
311 3 1 3 314 2 1 3 313 3 3 3

411 4 1 4 414 4 4 4
511 5 1 5

We will merely note that these tables seem even more irregular than those for
simple multiplication and this time, even the case for a prime modulus does not
seem to offer a guarantee of regular behaviour.

[One for you. Investigate powers in modulo arithmetic. Look at both
higher values of X and other values for the modulus.]
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prime numbers

One number is said to be a factor of another number if it divides into it exactly.
For example: 3isafactor of 6; 4isafactor of 12;
2isafactor of 18; andsoon
Note
» 1is a factor of ALL other numbers.
« Every number is a factor of itself.

A number may have several factors.
For example: 12 hasthefactors 1, 2, 3,4, 6, 12
16 hasthefactors 1, 2, 4, 8, 16
25 hasthefactors 1,5, 25
17 hasthefactors 1, 17
Note
« Every number, except 1, has at least two factors.

A prime number is a number which has two, and only two, factors.
For example: Thefirst 15 prime numbers are
2,3, 5 7,11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47
Note
e 1is NoT a prime number (it has only one factor).
» There is no end to the list of prime numbers.
* Numbers (other than 1) which are NoT prime are compound numbers.
» Prime numbers are usually called just ‘primes’.

Primes are thought of as the ‘building blocks’ for numbers in the sense that all
the other numbers can be made from them by using multiplication.
For example: 12 =2x2x 3 which can bewritten 22 x 3
20 =2x2x5 or 22 x5
25 =5x5 or 5
15600 =2x2x2x2x3x5x5x13 or 2* x3x5% x 13
Note
« There is only ever one way this can be done.
* A re-arrangement of the primes is NOT a different way.

large primes

In public key cryptography it is obviously important that the modulus (m) cannot
be easily factorized or else the whole system would be in jeopardy.

Typically the values of p and g used to generate m are each of the order of 100
digits (and more) long. This gives a number for m which will be over 200 digits
long. At present such large numbers can take years to factorize even with the
largest and fastest computers. And then, for the highest level of security the
key-values are changed at regular intervals.
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In working only with positive whole numbers a power, or index, is written as a
superscript to some other number to indicate how many of the other numbers
are to be multiplied together. The other number is called the base.
For example: In 22 the power is 3 and the base is 2;
so it means that 3 lots of 2 have to be multiplied together.
2x2x2which=8

3?2 means 3 x 3which=9

52 means5 x 5 which =25

3® means 3 x 3 x 3which =27

7° means7 x 7 x 7 x 7 x 7 which = 16807

Note
« If the power is 0, the answer is always 1 (958° = 1)
« If the power is 1, the answer is the number itself (37! = 37)

Using a Calculator
In this particular work the use of a calculator is essential, and a
‘scientific’ model is easiest to use.
The key required will be marked with something like X’ or it may be
the INVerse function of some other key. (Look in the manual)
To use it, simply enter the value for X, press the X’ key, enter the
value for y (the power) and then press [=]
For example: To work out 7° press: [7] [¥] [5] [=]
Note [ ] is used to show a particular key is meant, so [5] means the key labelled 5

If only a basic calculator is available the work is much more tedious,
especially for a large power, involving a lot of keying. Using the
memory helps but can save only a few key-strokes.
If the calculator has a constant facility (look in the manual) then the
number of key-strokes can be reduced considerably.
For instance, on one calculator, keying in [7] [X] [x] would mean
that every time the [=] was pressed after that, whatever was in the
display would be multiplied by 7
For example: 7°wouldrequire: [7] [x] [¥] [=] [=] [=] [=]
Note [=] isonly pressed 4 times (1 lessthan the power)
and that you do have to be careful in counting!
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techniques for large powers

Calculating the values of large powers is beyond the capability of most
calculators, though somecan doit if amodulo arithmeticisinvolved. However,
the size of the numbers being used here can be handled on a calculator by
using a particular technique. It is based upon the fact that if, after a series of
multiplications have been carried out, the only answer that is needed is the
remainder, thenit is possibleto work out the multiplications using remainders
at each stage and still produce the same final answer. This allowsthe work to
be done on an ordinary hand-held calculator.

We will work with the values given in the example on page 4.
This requires the value of 26* (mod 115) to be found.

First a particular sequence is developed based upon squaring:
261 26

262 = 676 whichisbigger than m(= 115) and so the remainder,
after dividing by 115 is found to replace it.
Itis101 and this allows us to write -

262 = 101 (mod 115)

Now, to find 264 which is (262)? itisonly necessary
to work with the remainder (1012 = 10201) and then
find the remainder for that. It is 81

264 = 81 (mod 115)
andsoon. ..

268 6 (mod 115)

26°= 36 (mod 115)

26%2= 31 (mod 115)

26%= 41 (mod 115)

Thisis far enough since the next step would be 228
and 128 is bigger than the value of E (= 83) which
will be used.

Now determine how the E value of 83 can be made only by the addition of
powers of 2 (1, 2, 4, 8 etc.).

83=1+2+16+64
This together, with the laws of indices gives us -
2683 = 26(1+2+16+64) = 261l x 262 x 2616 x 2664

Since we only require the remainder at the end we can do the multiplication
using the remainder values already worked out -

26 x 101 x 36 x 41 = 3875976
which, after dividing by 115 has a remainder of 16 so,
268 = 16 (mod 115)

In asimilar way, using 67 instead of 26 in the above process we have -
678 = g7(L+2+16+64) = 671 x 672 x 6716 x 74

which gives -

67 x4 x 101 x 6 = 162408
and
675 =28 (mod 115)

finding a
remainder
page 14

laws of
indices
page 15
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finding a remainder

Asked to find the remainder when 17 is divided by 3 can be done easily without
a calculator.
For example: 17 + 3 =5 with aremainder of 2
We can show thisas: 17=5x 3+ 2
Or, explaining it another way
5 lots of 3 were removed from 17 and 2 was |eft over.

Note

* A remainder is also known as a residue. divi

» The remainder must always be LEss than the divisor Ivisor
page 15

If the same sum is done on a calculator we get
17 + 3 = 5.6666667

which might be recognised as 5% in decimal form.

This is not very useful when trying to find a remainder if the numbers are big
enough to warrant the use of a calculator.
Like, what is the remainder when 1721 is divided by 477
The calculator gives
1721 + 47 = 36.617021
But what is the remainder? (It certainly is NOT 0.617021)
Let us note that 47 went into 1721: 36 times with a fraction (0.617021) left over.
Put another way, 36 lots of 47 were removed from 1721 and some was left over
- but how big was that ‘some’?
36 lots of 47 is 36 x 47 = 1692
That means 1692 was removed and 1721 - 1692 = 29
So, the remainder must have been 29
Check: 36 x 47 + 29 = 1721 v

Here is another method, using the same example.
1721 + 47 = 36.617021
Subtract the whole number part (36) to leave the fraction (0.617021)

Multiply this by the divisor (47) to get 29 - which is the remainder.

Note that, depending upon the calculator, in this last part it may sometimes be necessary
to round the given answer to the nearest whole number.

If several cases have to be handled this is a very good method and can be
speeded up by placing the divisor in the memory at the beginning.
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in other words

One number is said to be a multiple of another number if the first number is
equal to the second number multiplied by some whole number.
For example: 12isamultipleof 4 since12=4x 3
20isamultipleof 5since20=5x 4
Note
« A number is considered to be a multiple of itself since X =x x 1

Any division sum is made up of 4 parts, all of which are named.
The number which has to be divided, or shared out, is called the dividend.
The number which must do the dividing, is called the divisor.
The number giving the answer, is called the quotient.
The number giving the amount left over, is called the remainder.
dividend + divisor = quotient + remainder
For example: Inthe sum 27 + 4 = 6 with 3 left over
27 isthe dividend
4 isthedivisor
6 isthe quotient
3isthe remainder.
Note
* The remainder can be zero.

An operation (such as + - x +) which combines two numbers is said to be
commutative if the order in which the two numbers are placed makes no
difference to the answer.
For example: addition is commutativesince3+4=4+3
multiplication is commutativesince2 x 5=5x 2
subtraction is not commutativesince7-1#1-7
divisionisnot commutativesince6+3#3+ 6

The three principal rules which determine how numbers written using index
notation may be combined are known as the laws of indices.

They are
bmx p"= pm+ " b= pr= pm-n (bm)n: pmn
Two special cases which follow from these are

o= 1 o= X

T b

For example: 23 x 26 =23+6 =29=5]2 B+22=252=28=8
Note

« The two numbers being combined must have the same values for b

multiple

divisor

remainder

commutative

laws of indices
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