A Formulary for Mathematics

A collection of the Formulas, Facts and Figures often needed in mathematics

These are some of the pages of the first rough draft of a booklet which has now been published

It is in a handier A5 size, contains twice as much material as this, and uses a second colour (red) as a help in picking out the salient points on each page.

In addition, there is a set of work-sheets based on the booklet aimed at encouraging familiarity in its use, and developing some mathematical ideas.

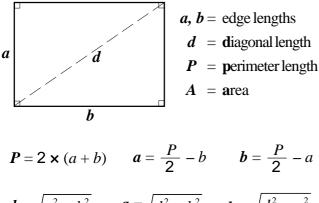
Full details can be found at www.cleavebooks.com

Index to Contents

Square, Oblong, Circle, Sector,	
Parallelogram, Trapezium, Triangle	3
Right-Angled Triangle	4
General Triangle	5
Cube, Cuboid, Polyhedrons	6
Sphere, Cylinder, Pyramid, Cone	7
Seconds or Minutes (of Angle or Time)	
into Decimal Fractions	8
Degrees & Compass Points	9
Algebra	10
Calculus	11
Statistics	12

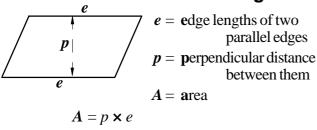
Values of ⁿ C _r	13
Values of N^n ($n = 2$ to 5)	14
Areas under Curve of Normal Distribution	15
Symbols and Abbreviations	16
The Greek Alphabet	17

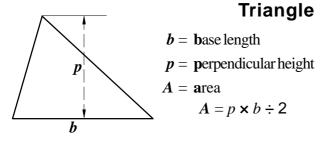
Square

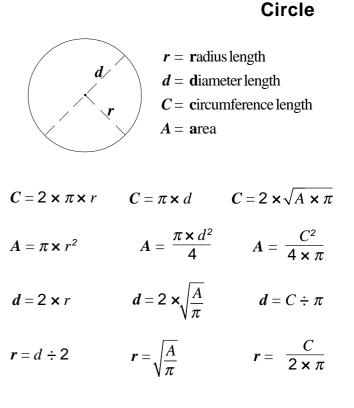

$$P = 4 \times e$$
 $P = 4 \times \sqrt{A}$ $P = 2 \times d \times \sqrt{2}$

 $A = e^2 \qquad A = d^2 \div 2 \qquad A = P^2 \div 16$

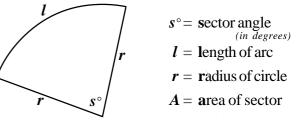
$$d = e \times \sqrt{2}$$
 $d = \sqrt{2 \times A}$ $d = \frac{P \times \sqrt{2}}{4}$


$$e = \sqrt{A}$$
 $e = P \div 4$ $e = \frac{d \times \sqrt{2}}{2}$

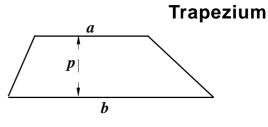

Oblong

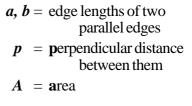


$$d = \sqrt{a^2 + b^2} \qquad a = \sqrt{d^2 - b^2} \qquad b = \sqrt{d^2 - a^2}$$
$$A = a \times b \qquad a = A \div b \qquad b = A \div a$$


Parallelogram

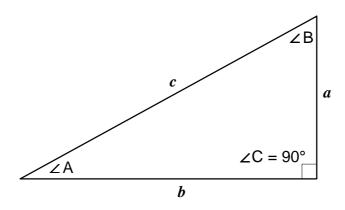
Sector



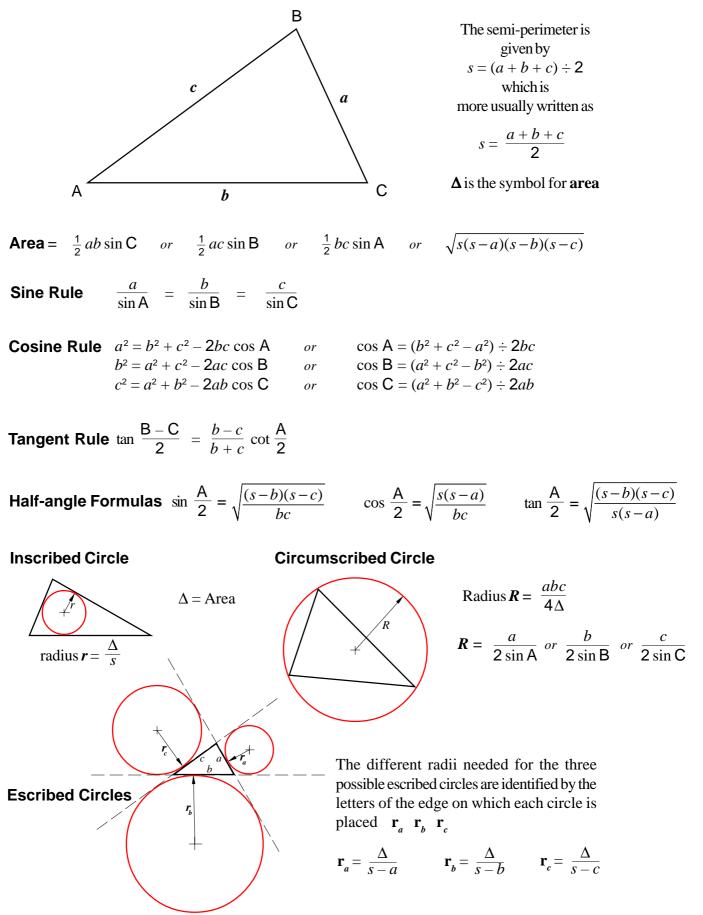

$$l = \pi \times r \times s^{\circ} \div 180$$

$$A = \pi \times r^2 \times s^\circ \div 360 \qquad A = r \times l \div 2$$

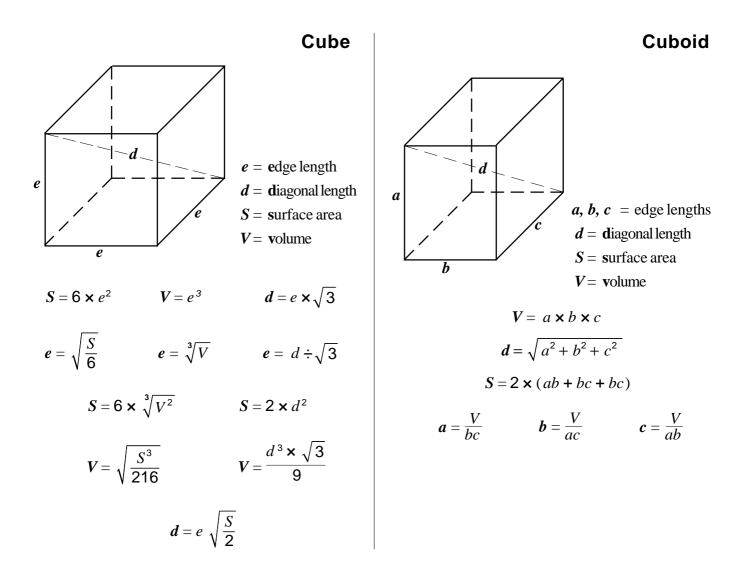
$$r = 2 \times A \neq l$$
 $l = 2 \times A \neq r$


 $r = {180 l \over \pi s^{\circ}}$ $s^{\circ} = {180 l \over \pi r}$ $s^{\circ} = {360 A \over \pi r^2}$

$$A = p \times (a + b) \div 2$$


Right-Angled Triangle

Take care to match given data to the correct letters


G	iven		Use the formula from the appropriate box below to find						
	IVCII	a	b	С	∠A	∠B			
a	b			$c = \sqrt{a^2 + b^2}$	$\tan A = a \div b$	$\tan B = b \div a$			
a	с		$b=\sqrt{c^2-a^2}$		$\sin A = a \div c$	$\cos B = a \div c$			
b	с	$a=\sqrt{c^2-b^2}$			$\cos A = b \div c$	$\sin B = b \div c$			
a	∠A		ê	$c = a \div \sin A$		B = 90° – A			
a	∠B		$b = a \times \tan B$	$c = a \div \cos B$	A = 90° - B				
b	∠A	$a = b \times \tan A$		$c = b \div \cos A$		B = 90° - A			
b	∠B	$a = b \div \tan B$		$c = b \div \sin B$	A = 90° - B				
с	∠A	$a = c \times \sin A$	$b = c \times \cos A$			B = 90° - A			
с	∠B	$a = c \times \cos B$	$b = c \times \sin B$		A = 90° - B				

General Triangle

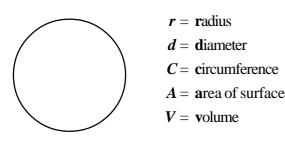
All the above formulas are cyclic

That is, the six variables (*a*, *b*, *c*, A, B, C) can be changed around as long as the pattern of the formula is kept. This is best seen in the **Cosine Rule** where all three possible variations are given, and the pattern is clear.

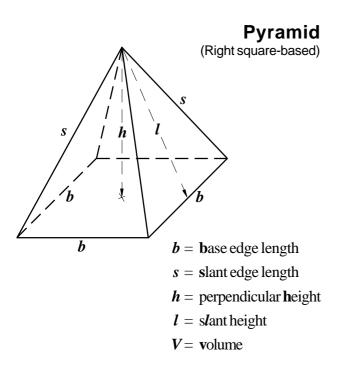
Regular Polyhedrons

Associated with any regular convex polyhedron are two particular spheres. A **circumsphere** is the sphere drawn around the *outside* of a regular convex polyhedron so as as to touch every vertex of that polyhedron. An **insphere** is the sphere drawn around the *inside* of a regular convex polyhedron so as as to touch every face of that polyhedron. If the edge length of the polyhedron is *e* then

area of the surface of the **polyhedron** is given by $e^2 \times A$ -factor volume of the **polyhedron** is given by $e^3 \times V$ -factor radius of the circumsphere is given by $e \times C$ -factor radius of the insphere is given by $e \times I$ -factor


The necessary factors are to be found in the table below.

The size of the dihedral angle (in degrees) between faces is also given


	o. of aces	Name	A-factor	V-factor	C-factor	I-factor	Dihedral Angle
	4	tetrahedron	1.73205	0.117851	0.612372	0.204124	70.5333
	6	cube	6	1	0.866025	0.5	90
	8	octahedron	3.46410	0.471405	0.707107	0.408248	109.467
-	12	dodecahedron	20.6458	7.66312	1.40126	1.11352	116.565
	20	icosahedron	8.66025	2.18170	0.951057	0.755761	138.190

Except for values which are exact, all others are given to 6 significant figures.

Sphere

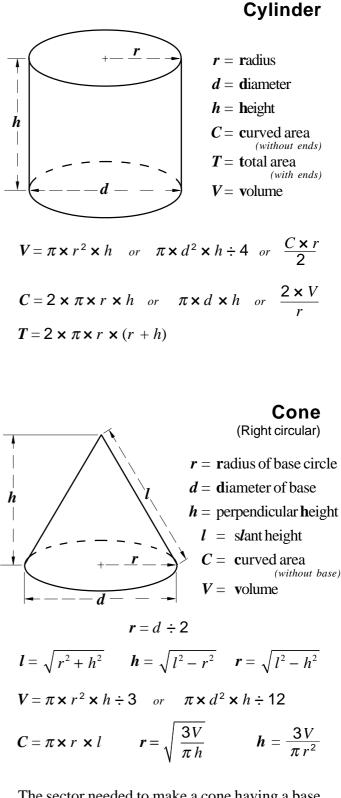
 $C = 2 \times \pi \times r \quad or \quad \pi \times d$ $A = 4 \times \pi \times r^{2} \quad or \quad \pi \times d^{2}$ $V = 4 \times \pi \times r^{3} \div 3 \quad or \quad \pi \times d^{3} \div 6$ $d = 2 \times r \quad or \quad \sqrt{\frac{A}{\pi}} \quad or \quad \sqrt[3]{\frac{6V}{\pi}}$ $r = d \div 2 \quad or \quad \frac{1}{2}\sqrt{\frac{A}{\pi}} \quad or \quad \sqrt[3]{\frac{3V}{4\pi}}$

$$V = b^{2} \times h \div 3$$

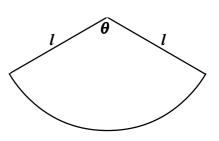
$$h = 3 \times V \div b^{2}$$

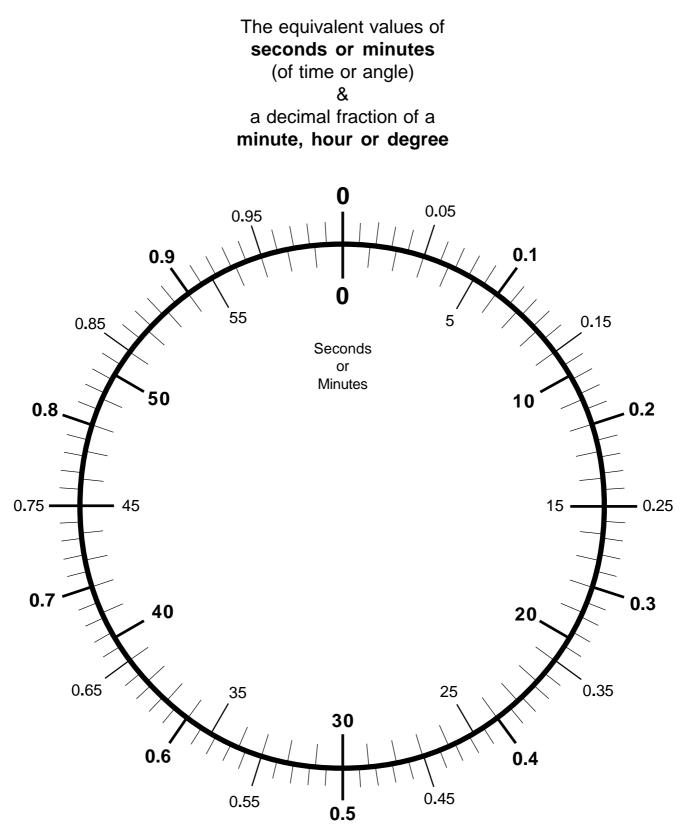
$$b = \sqrt{\frac{3V}{h}}$$

$$s = \sqrt{h^{2} + \frac{b^{2}}{2}}$$

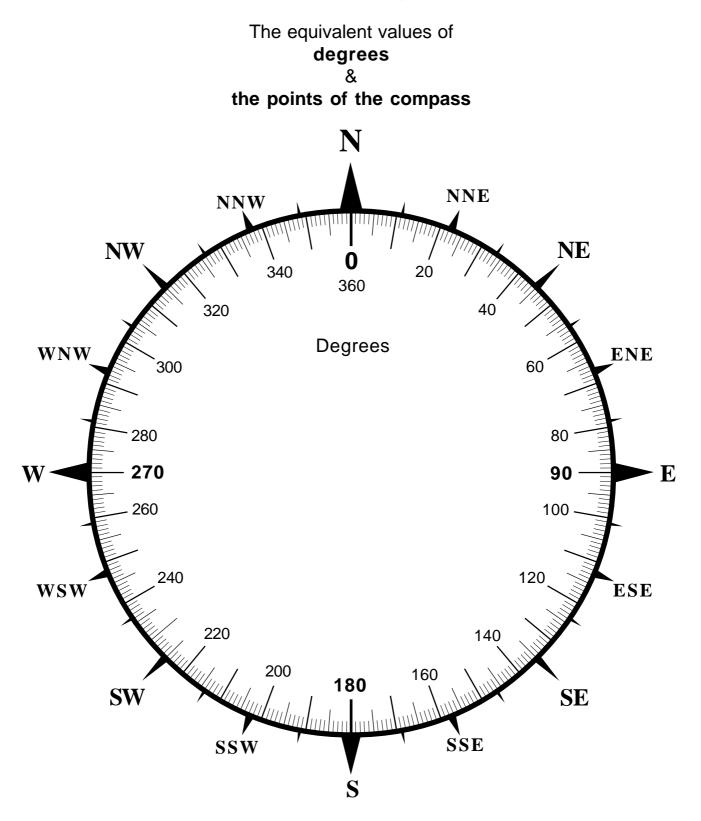

$$b = \sqrt{2(s^{2} - h^{2})}$$

$$h = \sqrt{s^{2} - \frac{b^{2}}{2}}$$


$$b = 2\sqrt{(l^{2} - h^{2})}$$


$$l = \sqrt{h^{2} + \frac{b^{2}}{4}}$$

$$h = \sqrt{l^{2} - \frac{b^{2}}{4}}$$


The sector needed to make a cone having a base radius of r and slant height of l can be cut from a circle with a radius of l and a sector angle of θ° where $\theta^{\circ} = \frac{360 r}{l}$

Decimal Fraction of Minute, Hour or Degree

Time	Angle	
60 seconds = 1 minute	60 seconds =	1 minute
60 minutes = 1 hour	60 minutes =	1 degree
Time is written in the form Angle is written in the form	1	12:34:06 123° 4' 56"

Quadratic Equations

If $ax^2 + bx + c = 0$ then

$$x = \frac{-b \pm \sqrt{b^2 - 4aa}}{2a}$$

If $b^2 - 4ac > 0$ there are two, real, different roots. If $b^2 - 4ac = 0$ there is only one root. If $b^2 - 4ac < 0$ the roots are complex.

Indices

$$a^{m} \times a^{n} = a^{m+n}$$

$$a^{m} \div a^{n} = a^{m-n}$$

$$(a^{m})^{n} = a^{m \times n}$$

$$\sqrt[n]{a^{m}} = a^{m \div n}$$

$$\sqrt[n]{a^{m}} = a^{m \div n}$$

$$a^{n} = a^{\frac{1}{n}}$$

$$a^{-n} = \frac{1}{a^{n}}$$

$$a^{0} = 1$$

$$(a \times b)^{n} = a^{n} \times b^{n}$$

$$(a \div b)^{n} = a^{n} \div b^{n}$$

Expansions & Factorisations

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a+b)^{3} = a^{3} + b^{3} + 3ab (a+b)$$

$$(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$

$$(a-b)^{3} = a^{3} - b^{3} - 3ab (a-b)$$

$$a^{2} - b^{2} = (a+b)(a-b)$$

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

$$a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$$

$$a^{4} - b^{4} = (a+b)(a^{3} - a^{2}b + ab^{2} - b^{3})$$

$$a^{4} - b^{4} = (a-b)(a^{3} + a^{2}b + ab^{2} + b^{3})$$

$$a^{n} + b^{n} \text{ is divisible by } (a+b) \text{ when } n \text{ is odd}$$

$$but \text{ by } (a-b) \text{ never}$$

$$a^{n} - b^{n} \text{ is divisible by } (a+b) \text{ when } n \text{ is even}$$

$$and \text{ by } (a-b) \text{ always}$$

Logarithms

If $N = a^x$ then $\log_a N = x$ and $N = a^{\log_a N}$ $\log (a \times b) = \log a + \log b$ $\log (a \div b) = \log a - \log b$ $\log a^n = n \log a$ $\log \sqrt[n]{a} = \frac{1}{n} \log a$ $\log_a N = \frac{\log_b N}{\log_b a}$ $\log_e N = 2.3026 \times \log_{10} N$ $\log_a 1 = 0$

Arithmetic Progressions

The general form of an AP is *a*, *a* + *d*, *a* + 2*d*, *a* + 3*d*, *a* + 4*d*, *a* + (*n* - 1)*d* where *a* = the first term *d* = the common difference *n* = the number of terms the last term is l = a + (n - l)dthe total sum of *n* terms is $S_n = n(a + 1) \div 2$ or $n[2a + (n - 1)d] \div 2$

Geometic Progressions

The general form of a GP is *a*, *ar*, *ar*², *ar*³, *ar*⁴, *ar*⁵, *ar*^{*n*-1} where *a* = the first term *r* = the common ratio *or* multiplier *n* = the number of terms the total sum of *n* terms is $S_n = a(1 - r^n) \div (1 - r)$ if r < 1 *or* $S_n = a(r^n - 1) \div (r - 1)$ if r > 1if *n* is infinity and $r^2 < 1$ then $S_{\infty} = a \div (1 - r)$ The geometric mean of two numbers *a* and $b = \sqrt{ab}$

Sums of Powers of Natural Numbers

The first *n* natural numbers are 1, 2, 3, 4, 5, 6, 7, *n* Their sum when each has been raised to the power *r* is $\sum n^r = 1^r + 2^r + 3^r + 4^r + 5^r + 6^r + \dots + n^r$ For any given value of *r* there is a formula for $\sum n^r$ The first six are (*r*=1) $\sum n = n(n+1) \div 2$ (*r*=2) $\sum n^2 = n(n+1)(2n+1) \div 6$ (*r*=3) $\sum n^3 = n^2(n+1)^2 \div 4$ or $(\sum n)^2$ (*r*=4) $\sum n^4 = n(n+1)(2n+1)(3n^2 + 3n - 1) \div 30$ (*r*=5) $\sum n^5 = n^2(n+1)^2(2n^2 + 2n - 1) \div 12$

$$\begin{array}{l} (r=5) \quad \Sigma n^{5} = n^{2}(n+1)^{2}(2n^{2}+2n-1) = 12 \\ (r=6) \quad \Sigma n^{6} = n(n+1)(2n+1)(3n^{4}+6n^{3}-3n+1) = 42 \end{array}$$

Combinations

Given n different objects and required to choose r at a time, this formula gives the number of ways in which it can be done, neglecting the order in which they are chosen.

$${}^{n}\mathbf{C}_{r} = \frac{n!}{(n-r)! \ r!}$$

Given the importance of these numbers in the Binomial Theorem below, they are also known as the **Binomial Coefficients**. (*see Table of Values at the back*)

Binomial Theorem

$$(a+b)^{n} = a^{n} + {}^{n}C_{1}a^{n-1}b + {}^{n}C_{2}a^{n-2}b^{2} + {}^{n}C_{3}a^{n-3}b^{3} + \dots$$
$$\dots + {}^{n}C_{r}a^{n-r}b^{r} + \dots + b^{n}$$

Calculus

function $\mathbf{f}(x)$ or $y = \mathbf{f}(x)$	(1st) derivative $\mathbf{f}'(\mathbf{x})$ or $\frac{d}{dx}\mathbf{f}(\mathbf{x})$ or $\frac{dy}{dx}$	integral $\int \mathbf{f}(x) dx$ or $\int y dx$
<i>x</i> ^{<i>n</i>}	nx^{n-1}	$\frac{1}{n+1}x^{n+1}$
e ^{<i>x</i>}	e ^x	e <i>x</i>
e^{ax}	ae ^{ax}	$\frac{1}{a}e^{ax}$
<i>a x</i>	$a^x \log_{e} a$	$\frac{1}{\log_{e} a} a^{x}$
log _e x	$\frac{1}{x}$	$x \log_{e} x - x$
$\frac{1}{x}$	$-\frac{1}{x^2}$	$\log_{e} x $
$\frac{1}{a^2+x^2}$		$\frac{1}{a} \tan^{-1} \frac{x}{a}$
$\frac{1}{a^2 - x^2}$		$\frac{1}{a} \tanh^{-1} \frac{x}{a}$
$\frac{1}{x^2 - a^2}$		$-\frac{1}{a} \operatorname{coth}^{-1} \frac{x}{a}$
$\frac{1}{\sqrt{a^2+x^2}}$		$\sinh^{-1}\frac{x}{a}$
$\frac{1}{\sqrt{x^2 - a^2}}$		$\cosh^{-1}\frac{x}{a}$
sin <i>x</i>	$\cos x$	$-\cos x$
$\cos x$	$-\sin x$	$\sin x$
tan x	$\sec^2 x$	$\log_{e} \sec x $
$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}$	
$\cos^{-1} x$	$\frac{1}{\sqrt{1-x^2}}$ $-\frac{1}{\sqrt{1-x^2}}$	
$\tan^{-1}x$	$\frac{1}{1+x^2}$	

constants of integration have not been shown

Given that u and v are both functions of x **Product rule if** $y = u \times v$ then $\frac{dy}{dx} = v\frac{du}{dx} + u\frac{dv}{dx}$ **Quotient rule if** $y = u \div v$ then $\frac{dy}{dx} = \left(v\frac{du}{dx} - u\frac{dv}{dx}\right) \div v^2$ **Chain rule if** y is a function of u then $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ In statistics, when the data content is numerical, it is usual to use the symbol x to represent the general case, and individual pieces of data as $x_1 x_2 x_3 x_4 x_5 x_6 x_7 \dots x_n$ Another commonly used symbol is Σ (*Greek sigma*) which means "find the sum of". So a formula containing Σx would mean "add up all the *x*-numbers", and Σx^2 would mean "square all the *x*-numbers and add up all those values". The number of pieces of data is given by n.

If the data is grouped, then f is used to refer to the frequency of the data in each group and that would require a change to some of the formulas given here.

Arithmetic Mean

Generally this is referred to simply as the mean.

Symbol is \overline{x}

This may be found by Adding up the values of all the data

Dividing by the number of pieces of data

Expressed as a formula it is $\overline{x} = \frac{\sum x}{n}$

Range

is the absolute value of the difference between the greatest and least values of the data.

Expressed as a formula it is range = |x|

$$\mathbf{ange} = |x_{\max} - x_{\min}|$$

Root Mean Square Value

is given by
$$\sqrt{\frac{\sum x^2}{n}}$$

Standard Deviation

This may be found by Squaring the values of all the data Adding them all up Dividing by how many there are Subtracting the square of the mean value Taking the square root. Symbol is σ

Expressed as a formula it is $\boldsymbol{\sigma} = \sqrt{\frac{\sum x^2}{n} - \bar{\boldsymbol{x}}^2}$

Variance

is the square of the Standard Deviation $= \sigma^2$

χ^2 (chi-squared) Test

For any particular piece of data, if

O is its Observed frequency and

E is its Expected frequency

then

$$\boldsymbol{\chi}^2 = \sum \frac{(O-E)}{E}$$

which is the summation carried out over all the groups of the data

Correlation Coefficient

More precisely it is

Pearson's product moment correlation coefficient Symbol is r

When the data is in the form of ordered pairs of numbers such as (x, y) and there are n such pairs, then the amount of correlation between them can be determined by

- **A**. Multiplying the matching x and y values together, adding them all up and multiplying the total by n
- **B**. Adding up all *x*-values; adding up all *y*-values; and multiplying the two results together.
- **C**. Subtracting the result of **B** from **A** (*It might be negative*)
- **D**. Squaring all *x*-values, adding them up, multiplying the total by *n*. Repeating for *y*-values.
- E. Adding together all *x*-values, and squaring the total. Repeating for *y*-values.
- **F.** Subtracting the *x*-result in **E** from that in **D** and repeating that for *y*-result.
- **G**. Multiplying the two answers from **F** together and taking the square root.

Then r = result from C ÷ result from G

Expressed as a formula it is

$$r = \frac{n\sum xy - \sum x\sum y}{\sqrt{\left[n\sum x^2 - \left(\sum x\right)^2\right]\left[n\sum y^2 - \left(\sum y\right)^2\right]}}$$

Straight Line Formula

When the data is in the form of ordered pairs of numbers such as (x, y) and there is a good degree of correlation between them (*as determined above*) then it is possible, as well as useful, to draw a straight line which can serve as the basis of further calculations.

The equation for this line will be of the form

 $y = \mathbf{m}x + \mathbf{c}$

The necessary values of 'm' and 'c' can be found from

$$\mathbf{m} = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - \left(\sum x\right)^2}$$

and

$$\mathbf{c} = \frac{\sum y - m \sum x}{n}$$

Rank Order Correlation Coefficient

More precisely it is

Spearman's rank order correlation coefficient Symbol is ρ

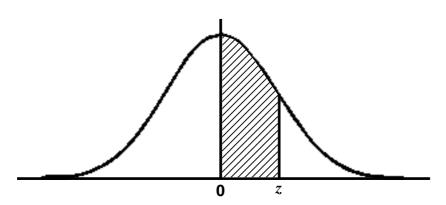
When two sets of data have been ranked in order by some criteria or other, this coefficient is used to determine how closely the two lists agree (or differ).

Given that there are *n* items listed, it is found by Finding the difference in value (by their list order) of each corresponding pair of rankings. Squaring all the differences.

Adding the squared values together and multiplying by 6

Dividing the previous result by $(n^3 - n)$

Subtracting that from 1


Values of ${}^{n}C_{r}$

$${}^{n}\mathbf{C}_{r} = \frac{n!}{(n-r)! \ r!}$$

n ∎	- 0 0 4 υ	°∠ 8 0	£ 5 6 4 6	14 14 14 14 14 14 14 14 14 14 14 14 14 1	2 2 2 2 X 2 2	8 2 8 2 8	8 8 8 8 8 8	40 33 33 36 40 38 33 36
7			1 12 78 364 1365	4 368 12 376 31 824 75 582 167 960	352 716 705 432 1 352 078 2 496 144 4 457 400	7 726 160 13 037 895 21 474 180 34 597 290 54 627 300	84 672 315 129 024 480 193 536 720 286 097 760 417 225 900	600 805 296 854 992 152 1 203 322 288 1 676 056 044 2 311 801 440
10		-	11 66 1 001 3 003	8 008 19 448 43 758 92 378 184 756	352 716 646 646 1 144 066 1 961 256 3 268 760	5 311 735 8 436 285 13 123 110 20 030 010 30 045 015	44 352 165 64 512 240 92 561 040 131 128 140 183 579 396	254 186 856 348 330 136 472 733 756 635 745 396 847 660 528
6		, 6	55 220 715 2 002 5 005	11 440 24 310 48 620 92 378 167 960	293 930 497 420 817 190 1 307 504 2 042 975	3 124 550 4 686 825 6 906 900 10 015 005 14 307 150	20 160 075 28 048 800 38 567 100 52 451 256 70 607 460	94 143 280 124 403 620 163 011 640 211 915 132 273 438 880
∞		4 ი - ზ	165 495 1 287 3 003 6 435	12 870 24 310 43 758 75 582 125 970	203 490 319 770 490 314 735 471 1 081 575	1 562 275 2 220 075 3 108 105 4 292 145 5 852 925	7 888 725 10 518 300 13 884 156 18 156 204 23 535 820	30 260 340 38 608 020 48 903 492 61 523 748 76 904 685
7		1 120 36 120	330 792 1 716 3 432 6 435	11 440 19 448 31 824 50 388 77 520	116 280 170 544 245 157 346 104 480 700	657 800 888 030 1 184 040 1 560 780 2 035 800	2 629 575 3 365 856 4 272 048 5 379 616 6 724 520	8 347 680 10 295 472 12 620 256 15 380 937 18 643 560
9		1 7 28 84 210	462 924 3 003 5 005	8 008 12 376 18 564 27 132 38 760	54 264 74 613 100 947 134 596 177 100	230 230 296 010 376 740 475 020 593 775	736 281 906 192 1 107 568 1 344 904 1 623 160	1 947 792 2 324 784 2 760 681 3 262 623 3 838 380
с)	-	6 21 56 126 252	462 792 1 287 2 002 3 003	4 368 6 188 8 568 11 628 15 504	20 349 26 334 33 649 42 504 53 130	65 780 80 730 98 280 118 755 142 506	169 911 201 376 237 336 278 256 324 632	376 992 435 897 501 942 575 757 658 008
4	م –	15 35 70 210 210	330 495 715 1 001 1 365	1 820 2 380 3 060 3 876 4 845	5 985 7 315 8 855 10 626 12 650	14 950 17 550 20 475 23 751 27 405	31 465 35 960 40 920 46 376 52 360	58 905 66 045 73 815 82 251 91 390
с С	- 4 6	20 35 56 84 120	165 220 286 364 455	560 680 816 969 1 140	1 330 1 540 1 771 2 024 2 300	2 600 2 925 3 276 3 654 4 060	4 495 4 960 5 456 5 984 6 545	7 140 7 770 8 436 9 139 9 880
$r ightarrow {f 2}$	- e o Ó	15 28 36 45	55 66 78 91 105	120 153 171 190	210 231 253 276 300	325 351 378 406 435	465 496 528 561 595	630 666 703 741 780
\hat{u}	- 0 0 4 10	6 9 0 10 8 7 6	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15 14 14 14 14 14 14 14 14 14 14 14 14 14	がなおなな	8 8 8 8 8	8 8 8 8 8 8	8 8 8 8 9

N	N^2	N^3	N^4	N^{5}	N^{6}
1	1	1	1	1	1
2	4	8	16	32	64
3	9	27	81	243	729
4	16	64	256	1 024	4 096
5	25	125	625	3 125	15 625
6	36	216	1 296	7 776	46 656
7	49	343	2 401	16 807	117 649
8	64	512	4 096	32 768	262 144
9	81	729	6 561	59 049	531 441
10	100	1 000	10 000	100 000	1 000 000
11	121	1 331	14 641	161 051	1 771 561
12	144	1 728	20 736	248 832	2 985 984
13	169	2 197	28 561	371 293	4 826 809
14	196	2 744	38 416	537 824	7 529 536
15	225	3 375	50 625	759 375	11 390 625
16	256	4 096	65 536	1 048 576	16 777 216
17	289	4 913	83 521	1 419 857	24 137 569
18	324	5 832	104 976	1 889 568	34 012 224
19	361	6 859	130 321	2 476 099	47 045 881
20	400	8 000	160 000	3 200 000	64 000 000
21	441	9 261	194 481	4 084 101	85 766 121
22	484	10 648	234 256	5 153 632	113 379 904
23	529	12 167	279 841	6 436 343	148 035 889
24	576	13 824	331 776	7 962 624	191 102 976
25	625	15 625	390 625	9 765 625	244 140 625
26	676	17 576	456 976	11 881 376	308 915 776
27	729	19 683	531 441	14 348 907	387 420 489
28	784	21 952	614 656	17 210 368	481 890 304
29	841	24 389	707 281	20 511 149	594 823 321
30	900	27 000	810 000	24 300 000	729 000 000
31	961	29 791	923 521	28 629 151	887 503 681
32	1 024	32 768	1 048 576	33 554 432	1 073 741 824
33	1 089	35 937	1 185 921	39 135 393	1 291 467 969
34	1 156	39 304	1 336 336	45 435 424	1 544 804 416
35	1 225	42 875	1 500 625	52 521 875	1 838 265 625
36	1 296	46 656	1 679 616	60 466 176	2 176 782 336
37	1 369	50 653	1 874 161	69 343 957	2 565 726 409
38	1 444	54 872	2 085 136	79 235 168	3 010 936 384
39	1 521	59 319	2 313 441	90 224 199	3 518 743 761
40	1 600	64 000	2 560 000	102 400 000	4 096 000 000
41	1 681	68 921	2 825 761	115 856 201	4 750 104 241
42	1 764	74 088	3 111 696	130 691 232	5 489 031 744
43	1 849	79 507	3 418 801	147 008 443	6 321 363 049
44	1 936	85 184	3 748 096	164 916 224	7 256 313 856
45	2 025	91 125	4 100 625	184 528 125	8 303 765 625
46	2 116	97 336	4 477 456	205 962 976	9 474 296 896
47	2 209	103 823	4 879 681	229 345 007	10 779 215 329
48	2 304	110 592	5 308 416	254 803 968	12 230 590 464
49	2 401	117 649	5 764 801	282 475 249	13 841 287 201
50	2 500	125 000	6 250 000	312 500 000	15 625 000 000

Areas under Curve of Normal Distribution

The table gives the fraction of the total area under the curve for the shaded area shown, which lies between the middle ordinate (*the mean*) and the ordinate at z for values of z from 0.00 to 3.99 (*All values rounded to 4 decimal places*)

$\downarrow z \rightarrow$	0	1	2	3	4	5	6	7	8	9
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0754
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2258	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2518	0.2549
0.7	0.2580	0.2612	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2996	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998
3.5 3.6 3.7 3.8 3.9	0.4998 0.4998 0.4999 0.4999 0.5000	0.4998 0.4998 0.4999 0.4999 0.5000	0.4998 0.4999 0.4999 0.4999 0.5000	0.4998 0.4999 0.4999 0.4999 0.5000	0.4998 0.4999 0.4999 0.4999 0.5000	0.4998 0.4999 0.4999 0.4999 0.5000	0.4998 0.4999 0.4999 0.4999 0.5000	0.4998 0.4999 0.4999 0.4999 0.5000	0.4998 0.4999 0.4999 0.4999 0.4999 0.5000	0.4998 0.4999 0.4999 0.4999 0.4999 0.5000

Symbols and Abbreviations

Mathematics uses many symbols and abbreviations to represent instructions, or numbers, in a more concise form. Here, with a brief note as to their meaning, are the ones most commonly used. *see also* The Greek Alphabet

- + add or plus or positive
- minus or subtract or negative
- ∼ find the absolute difference of
- \times times *or* multiplied by
- * times or multiplied by
- ÷ divided by
- / divided by
- ± add or subtract plus or minus positive or negative
- = equals *or* is equal to
- \neq does not equal *or* is not equal to
- \approx is approximately equal to
- is equivalent to or has the same value as is identically equal to is congruent to
- < is less than
- \leq is less than or equal to
- > is greater than
- \geqslant is greater than or equal to
- \sim varies as *or* is proportional to
- : proportion
- decimal (or fraction) point
- , decimal marker
- % per cent *or* out of a hundred
- **%** per mil *or* out of a thousand
- () brackets or parentheses
- **()** angle brackets
- [] square brackets
- { } curly brackets *or* braces also used to enclose a set
- [x] the largest whole number which is not greater than x
- |x| the absolute value of x
- x^2 x squared
- x^3 x cubed
- x^n x to the *n*th power
- \sqrt{x} the square root of x
- $\sqrt[3]{x}$ the cube root of x
- \angle angle
- \parallel is parallel to
- \parallel is not parallel to
- \perp is perpendicular to
- degrees
- ' minutes
- " seconds

- \mathbb{N} the set of **natural** numbers
- \mathbb{Z} the set of **whole** numbers
- \mathbb{Q} the set of **rational** numbers
- \mathbb{R} the set of **real** numbers
- \mathbb{C} the set of **complex** numbers
- ∈ is a member of
- 🗲 is not a member of
- \subset is a subset of
- $\mathbf{\mathcal{T}}$ is not a subset of
- \supset includes
- U union
- \cap intersection
- \emptyset null *or* empty set
- \Rightarrow implies
- \Leftarrow is implied by
- \Leftrightarrow implies and is implied by
- . therefore
- ∞ infinity
- n! factorial n
- !n sub-factorial or derangements of n
- *i* square root of -1
- e ≈ 2.71828 ...
- $π \approx 3.14159...$
- $\mathbf{f}(x)$ function of x
- **f**'(*x*) first derivative of f(x)
- **f** integral *or* anti-derivative
- & hexadecimal number follows
- **AP** arithmetic progression
- **APR** annual percentage rate
- cu cubic (referring to units of volume)
- dp decimal places
- g c d greatest common denominator
- h c f highest common factor
- lcd lowest common denominator
- l c m lowest common multiple
- *m* gradient of a line
- mod modulus
- QED which was to be proved
- **s f** significant figures
- sq square (referring to units of area)
- **UT** Universal Time (Greenwich Mean Time)

The Greek Alphabet

The Greek alphabet is a rich source of symbols used in both mathematics and science, to the extent that nearly every one of them (both capitals and lower case) is used in some way or other. Some of them appear more than once to represent different things. Below is the full alphabet, and the names of the various symbols. The capital form of the letter is given in the first column, followed by the lower case version and its name. Then some of the more commonly seen meanings of usage are given.

Αα	alpha	$\alpha \beta \gamma$ are often used to identify angles in plane figures.
Ββ	beta	
Γγ	gamma	
Δδ	delta	Δ is sometimes used to represent the area of a plane figure. δ is used (in calculus) to show that a small amount is considered.
Εε	epsilon	
Ζζ	zeta	
Нη	eta	
Θθ	theta	θ is used to indicate a general angle
Ιι	iota	
Кκ	kappa	
Λλ	lambda	λ is used to represent a scalar in vector work
Μμ	mu	μ is used (in the SI system) to represent the prefix <i>micro</i> μ is sometimes used to represent the arithmetic mean
Νν	nu	
Ξξ	xi	$\boldsymbol{\xi}$ is sometimes used as the symbol for the universal set
Οο	omicron	
Ππ	pi	Π is used to show that a continued product is needed π is used to represent the value of the irrational number 3.14159
		$\pi(n)$ means the number of primes less than, or equal to n
Ρρ	rho	$\pi(n)$ means the number of primes less than, or equal to <i>n</i>
Ρρ Σσ	rho sigma	 π(n) means the number of primes less than, or equal to n Σ is used to show that the sum of a series is to be found σ is used to represent the standard deviation of a population
		Σ is used to show that the sum of a series is to be found
Σσ	sigma	Σ is used to show that the sum of a series is to be found σ is used to represent the standard deviation of a population
Σ σ Τ τ	sigma tau	Σ is used to show that the sum of a series is to be found σ is used to represent the standard deviation of a population
Σ σ Τ τ Υ υ	sigma tau upsilon	 Σ is used to show that the sum of a series is to be found σ is used to represent the standard deviation of a population τ is used to represent the golden ratio 1.6180 (see also phi) Φ is sometimes used as the symbol for the empty set φ is used to represent the golden ratio 1.6180 (see also tau)
Σ σ Ττ Υυ Φφ	sigma tau upsilon phi	 Σ is used to show that the sum of a series is to be found σ is used to represent the standard deviation of a population τ is used to represent the golden ratio 1.6180 (see also phi) Φ is sometimes used as the symbol for the empty set φ is used to represent the golden ratio 1.6180 (see also tau) φ (n) means the number of positive integers less than, and relatively prime to, n