A Formulary for Mathematics

A collection of the Formulas, Facts and Figures
often needed in mathematics

These are some of the pages of the first rough draft of a booklet which has now been published

It is in a handier A5 size, contains twice as much material as this, and uses a second colour (red) as a help in picking out the salient points on each page.

In addition, there is a set of work-sheets based on the booklet aimed at encouraging familiarity in its use, and developing some mathematical ideas.

Full details can be found at
www.cleavebooks.com

Index to Contents

Square, Oblong, Circle, Sector, Parallelogram, Trapezium, Triangle 3
Right-Angled Triangle 4
General Triangle 5
Cube, Cuboid, Polyhedrons 6
Sphere, Cylinder, Pyramid, Cone 7
Seconds or Minutes (of Angle or Time) into Decimal Fractions 8
Degrees \& Compass Points 9
Algebra 10
Calculus 11
Statistics 12
Values of ${ }^{n} \mathrm{C}_{r}$ 13
Values of N^{n} ($n=2$ to 5) 14
Areas under Curve of Normal Distribution 15
Symbols and Abbreviations 16
The Greek Alphabet 17

$\boldsymbol{e}=$ edge length
$\boldsymbol{d}=$ diagonal length
$\boldsymbol{P}=$ perimeter length
$A=$ area

$$
\begin{array}{lll}
\boldsymbol{P}=4 \times e & \boldsymbol{P}=4 \times \sqrt{A} & \boldsymbol{P}=2 \times d \times \sqrt{2} \\
\boldsymbol{A}=e^{2} & \boldsymbol{A}=d^{2} \div 2 & \boldsymbol{A}=P^{2} \div 16 \\
\boldsymbol{d}=e \times \sqrt{2} & \boldsymbol{d}=\sqrt{2 \times A} & \boldsymbol{d}=\frac{P \times \sqrt{2}}{4} \\
\boldsymbol{e}=\sqrt{A} & \boldsymbol{e}=P \div 4 & \boldsymbol{e}=\frac{d \times \sqrt{2}}{2}
\end{array}
$$

Oblong

$\boldsymbol{a}, \boldsymbol{b}=$ edge lengths
$\boldsymbol{d}=$ diagonal length
$\boldsymbol{P}=$ perimeter length
A = area

$$
\begin{array}{lll}
\boldsymbol{P}=2 \times(a+b) & \boldsymbol{a}=\frac{P}{2}-b & \boldsymbol{b}=\frac{P}{2}-a \\
\boldsymbol{d}=\sqrt{a^{2}+b^{2}} & \boldsymbol{a}=\sqrt{d^{2}-b^{2}} & \boldsymbol{b}=\sqrt{d^{2}-a^{2}} \\
\boldsymbol{A}=a \times b & \boldsymbol{a}=A \div b & \boldsymbol{b}=A \div a
\end{array}
$$

Parallelogram

$\boldsymbol{e}=$ edge lengths of two parallel edges
$\boldsymbol{p}=$ perpendicular distance between them
$A=$ area

$$
\boldsymbol{A}=p \times e
$$

Triangle

$\boldsymbol{b}=$ base length
$\boldsymbol{p}=$ perpendicular height
$\boldsymbol{A}=$ area
$A=p \times b \div 2$

$r=$ radius length
$\boldsymbol{d}=$ diameter length
$\boldsymbol{C}=$ circumference length $\boldsymbol{A}=$ area
$\boldsymbol{C}=2 \times \pi \times r$
$\boldsymbol{C}=\pi \times d$
$\boldsymbol{C}=2 \times \sqrt{A \times \pi}$
$\boldsymbol{A}=\pi \times r^{2} \quad \boldsymbol{A}=\frac{\pi \times d^{2}}{4} \quad \boldsymbol{A}=\frac{C^{2}}{4 \times \pi}$
$\boldsymbol{d}=2 \times r$
$\boldsymbol{d}=2 \times \sqrt{\frac{A}{\pi}}$
$\boldsymbol{d}=C \div \pi$
$r=d \div 2$
$r=\sqrt{\frac{A}{\pi}}$
$r=\frac{C}{2 \times \pi}$

Sector

$$
s^{\circ}=s e c t o r ~(\text { in degrees })
$$

$l=$ length of arc
$r=$ radius of circle
$\boldsymbol{A}=\mathbf{a r e a}$ of sector
$l=\pi \times r \times s^{\circ} \div 180$

$$
\begin{array}{cr}
\boldsymbol{A}=\pi \times r^{2} \times s^{\circ} \div 360 & \boldsymbol{A}=r \times l \div 2 \\
\boldsymbol{r}=2 \times A \div l & \boldsymbol{l}=2 \times A \div r
\end{array}
$$

$$
r=\frac{180 l}{\pi s^{\circ}} \quad s^{\circ}=\frac{180 l}{\pi r} \quad s^{\circ}=\frac{360 \mathrm{~A}}{\pi r^{2}}
$$

Trapezium

$\boldsymbol{a}, \boldsymbol{b}=$ edge lengths of two
parallel edges
$\boldsymbol{p}=$ perpendicular distance between them
$\boldsymbol{A}=$ area

$$
\boldsymbol{A}=p \times(a+b) \div 2
$$

Take care to match given data to the correct letters

Given	Use the formula from the appropriate box below to find				
	a	b	c	$\angle \mathrm{A}$	$\angle B$
$a \quad b$			$c=\sqrt{a^{2}+b^{2}}$	$\tan \mathrm{A}=a \div b$	$\tan \mathrm{B}=b \div a$
$a \quad c$		$b=\sqrt{c^{2}-a^{2}}$		$\sin \mathrm{A}=a \div c$	$\cos \mathrm{B}=a \div c$
$b \quad c$	$a=\sqrt{c^{2}-b^{2}}$			$\cos \mathrm{A}=b \div c$	$\sin \mathrm{B}=b \div c$
$\boldsymbol{a} \quad \angle \mathrm{A}$		\hat{e}	$c=a \div \sin \mathrm{A}$		$B=90^{\circ}-A$
$a<B$		$b=a \times \tan \mathrm{B}$	$c=a \div \cos \mathrm{B}$	$A=90^{\circ}-B$	
$b \quad \angle \mathrm{~A}$	$a=b \times \tan \mathrm{A}$		$c=b \div \cos \mathrm{A}$		$B=90^{\circ}-A$
$\boldsymbol{b} \quad \angle \mathrm{B}$	$a=b \div \tan \mathrm{B}$		$c=b \div \sin \mathrm{B}$	$A=90^{\circ}-B$	
$\boldsymbol{c} \quad \angle \mathrm{A}$	$a=c \times \sin \mathrm{A}$	$b=c \times \cos \mathrm{A}$			$B=90^{\circ}-A$
$\boldsymbol{c} \quad \angle \mathrm{B}$	$a=c \times \cos \mathrm{B}$	$b=c \times \sin \mathrm{B}$		$A=90^{\circ}-B$	

The semi-perimeter is given by

$$
s=(a+b+c) \div 2
$$

which is
more usually written as

$$
s=\frac{a+b+c}{2}
$$

Δ is the symbol for area

Area $=\frac{1}{2} a b \sin \mathrm{C} \quad$ or $\quad \frac{1}{2} a c \sin \mathrm{~B} \quad$ or $\quad \frac{1}{2} b c \sin \mathrm{~A} \quad$ or $\quad \sqrt{s(s-a)(s-b)(s-c)}$
Sine Rule $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

Cosine Rule $a^{2}=b^{2}+c^{2}-2 b c \cos \mathrm{~A}$ or $\quad \cos \mathrm{A}=\left(b^{2}+c^{2}-a^{2}\right) \div 2 b c$
$b^{2}=a^{2}+c^{2}-2 a c \cos \mathrm{~B} \quad$ or $\quad \cos \mathrm{B}=\left(a^{2}+c^{2}-b^{2}\right) \div 2 a c$
$c^{2}=a^{2}+b^{2}-2 a b \cos \mathrm{C} \quad$ or $\quad \cos \mathrm{C}=\left(a^{2}+b^{2}-c^{2}\right) \div 2 a b$

Tangent Rule $\tan \frac{\mathrm{B}-\mathrm{C}}{2}=\frac{b-c}{b+c} \cot \frac{\mathrm{~A}}{2}$
Half-angle Formulas $\sin \frac{\mathrm{A}}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}} \quad \cos \frac{\mathrm{~A}}{2}=\sqrt{\frac{s(s-a)}{b c}} \quad \tan \frac{\mathrm{~A}}{2}=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$

Inscribed Circle

Circumscribed Circle

$$
\text { Radius } \boldsymbol{R}=\frac{a b c}{4 \Delta}
$$

$$
\boldsymbol{R}=\frac{a}{2 \sin \mathrm{~A}} \text { or } \frac{b}{2 \sin \mathrm{~B}} \text { or } \frac{c}{2 \sin \mathrm{C}}
$$

The different radii needed for the three possible escribed circles are identified by the letters of the edge on which each circle is placed $\quad \mathbf{r}_{a} \quad \mathbf{r}_{b} \quad \mathbf{r}_{c}$

$$
\mathbf{r}_{a}=\frac{\Delta}{s-a} \quad \mathbf{r}_{b}=\frac{\Delta}{s-b} \quad \mathbf{r}_{c}=\frac{\Delta}{s-c}
$$

All the above formulas are cyclic
That is, the six variables ($a, b, c, \mathrm{~A}, \mathrm{~B}, \mathrm{C}$) can be changed around as long as the pattern of the formula is kept. This is best seen in the Cosine Rule where all three possible variations are given, and the pattern is clear.

$$
\begin{array}{rrr}
\boldsymbol{S}=6 \times e^{2} & \boldsymbol{V}=e^{3} & \boldsymbol{d}=e \times \sqrt{3} \\
\boldsymbol{e}=\sqrt{\frac{S}{6}} & \boldsymbol{e}=\sqrt[3]{V} & \boldsymbol{e}=d \div \sqrt{3} \\
\boldsymbol{S}=6 \times \sqrt[3]{V^{2}} & \boldsymbol{S}=2 \times d^{2} \\
\boldsymbol{V}=\sqrt{\frac{S^{3}}{216}} & \boldsymbol{V}=\frac{d^{3} \times \sqrt{3}}{9}
\end{array}
$$

$\boldsymbol{e}=$ edge length
$\boldsymbol{d}=$ diagonal length
$S=$ surface area
$\boldsymbol{V}=$ volume

$$
d=e \sqrt{\frac{S}{2}}
$$

$\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}=$ edge lengths
$\boldsymbol{d}=$ diagonal length
$S=$ surface area
$\boldsymbol{V}=$ volume
$\boldsymbol{V}=a \times b \times c$
$\boldsymbol{d}=\sqrt{a^{2}+b^{2}+c^{2}}$
$S=2 \times(a b+b c+b c)$
$a=\frac{V}{b c}$
$\boldsymbol{b}=\frac{V}{a c}$
$c=\frac{V}{a b}$

Regular Polyhedrons
Associated with any regular convex polyhedron are two particular spheres.
A circumsphere is the sphere drawn around the outside of a regular convex polyhedron so as as to touch every vertex of that polyhedron.
An insphere is the sphere drawn around the inside of a regular convex polyhedron so as as to touch every face of that polyhedron.
If the edge length of the polyhedron is \boldsymbol{e} then
area of the surface of the polyhedron is given by $\boldsymbol{e}^{2} \times \mathrm{A}$-factor
volume of the polyhedron is given by $\boldsymbol{e}^{3} \times \mathrm{V}$-factor
radius of the circumsphere is given by $\boldsymbol{e} \times \mathrm{C}$-factor
radius of the insphere is given by $\boldsymbol{e} \times 1$-factor
The necessary factors are to be found in the table below.
The size of the dihedral angle (in degrees) between faces is also given

No. of faces	Name	A-factor	V-factor	C-factor	I-factor	Dihedral Angle
4	tetrahedron	1.73205	0.117851	0.612372	0.204124	70.5333
6	cube	6	1	0.866025	0.5	90
8	octahedron	3.46410	0.471405	0.707107	0.408248	109.467
12	dodecahedron	20.6458	7.66312	1.40126	1.11352	116.565
20	icosahedron	8.66025	2.18170	0.951057	0.755761	138.190

Except for values which are exact, all others are given to 6 significant figures.

$r=$ radius
$\boldsymbol{d}=$ diameter
$\boldsymbol{C}=$ circumference
$\boldsymbol{A}=$ area of surface
$\boldsymbol{V}=$ volume
$\boldsymbol{C}=2 \times \pi \times r$ or $\pi \times d$
$\boldsymbol{A}=4 \times \pi \times r^{2}$ or $\pi \times d^{2}$
$\boldsymbol{V}=4 \times \pi \times r^{3} \div 3$ or $\pi \times d^{3} \div 6$
$\boldsymbol{d}=2 \times r$ or $\sqrt{\frac{A}{\pi}}$ or $\sqrt[3]{\frac{6 V}{\pi}}$
$r=d \div 2$ or $\frac{1}{2} \sqrt{\frac{A}{\pi}}$ or $\sqrt[3]{\frac{3 V}{4 \pi}}$

Pyramid

$$
\boldsymbol{V}=b^{2} \times h \div 3
$$

$$
\boldsymbol{h}=3 \times V \div b^{2} \quad \boldsymbol{b}=\sqrt{\frac{3 V}{h}}
$$

$$
\boldsymbol{s}=\sqrt{h^{2}+\frac{b^{2}}{2}}
$$

$$
\boldsymbol{b}=\sqrt{2\left(s^{2}-h^{2}\right)}
$$

$$
\boldsymbol{h}=\sqrt{s^{2}-\frac{b^{2}}{2}}
$$

$$
\boldsymbol{b}=2 \sqrt{\left(l^{2}-h^{2}\right)}
$$

$$
l=\sqrt{h^{2}+\frac{b^{2}}{4}}
$$

$$
\boldsymbol{h}=\sqrt{l^{2}-\frac{b^{2}}{4}}
$$

$r=$ radius
$\boldsymbol{d}=$ diameter
$\boldsymbol{h}=$ height
$\boldsymbol{C}=$ curved area
(without ends)
$\boldsymbol{T}=$ total area
(with ends)
$\boldsymbol{V}=$ volume
$\boldsymbol{V}=\pi \times r^{2} \times h$ or $\pi \times d^{2} \times h \div 4$ or $\frac{C \times r}{2}$
$\boldsymbol{C}=2 \times \pi \times r \times h$ or $\pi \times d \times h$ or $\frac{2 \times V}{r}$
$\boldsymbol{T}=2 \times \pi \times r \times(r+h)$

Cone

(Right circular)
$r=$ radius of base circle
$\boldsymbol{d}=$ diameter of base
$\boldsymbol{h}=$ perpendicular height
$l=$ slantheight
$\boldsymbol{C}=$ curved area
(without base)
$\boldsymbol{V}=$ volume
$r=d \div 2$
$\boldsymbol{l}=\sqrt{r^{2}+h^{2}} \quad \boldsymbol{h}=\sqrt{l^{2}-r^{2}} \quad \boldsymbol{r}=\sqrt{l^{2}-h^{2}}$
$\boldsymbol{V}=\pi \times r^{2} \times h \div 3$ or $\pi \times d^{2} \times h \div 12$
$\boldsymbol{C}=\pi \times r \times l \quad \boldsymbol{r}=\sqrt{\frac{3 V}{\pi h}} \quad \boldsymbol{h}=\frac{3 V}{\pi r^{2}}$

The sector needed to make a cone having a base radius of \boldsymbol{r} and slant height of \boldsymbol{l} can be cut from a circle with a radius of l and a sector angle of θ° where $\theta^{\circ}=\frac{360 r}{l}$

The equivalent values of
 seconds or minutes

(of time or angle)
\&
a decimal fraction of a minute, hour or degree

Time
60 seconds $=1$ minute
60 minutes $=1$ hour

Angle
60 seconds $=1$ minute
60 minutes $=1$ degree

Time is written in the form
Angle is written in the form
hh:mm:ss
$\mathrm{d}^{\circ} \mathrm{m}^{\prime} \mathrm{s}{ }^{\prime \prime}$
example 12:34:06
example $123^{\circ} 4^{\prime} 56^{\prime \prime}$

Degrees \& Points of the Compass

The equivalent values of degrees
\&
the points of the compass

Quadratic Equations

If $a x^{2}+b x+c=0$ then

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

If $b^{2}-4 a c>0$ there are two, real, different roots.
If $b^{2}-4 a c=0$ there is only one root.
If $b^{2}-4 a c<0$ the roots are complex.

Indices

$$
\begin{aligned}
a^{m} \times a^{n} & =a^{m+n} \\
a^{m} \div a^{n} & =a^{m-n} \\
\left(a^{m}\right)^{n} & =a^{m \times n} \\
\sqrt[n]{a^{m}} & =a^{m \div n} \\
\sqrt[n]{a} & =a^{\frac{1}{n}} \\
a^{-n} & =\frac{1}{a^{n}} \\
a^{0} & =1 \\
(a \times b)^{n} & =a^{n} \times b^{n} \\
(a \div b)^{n} & =a^{n} \div b^{n}
\end{aligned}
$$

Expansions \& Factorisations

$$
\begin{aligned}
&(a+b)^{2}= a^{2}+2 a b+b^{2} \\
&(a-b)^{2}= a^{2}-2 a b+b^{2} \\
&(a+b)^{3}= a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
&(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b) \\
&(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3} \\
&(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b) \\
& a^{2}-b^{2}=(a+b)(a-b) \\
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \\
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& a^{4}-b^{4}=(a+b)\left(a^{3}-a^{2} b+a b^{2}-b^{3}\right) \\
& a^{4}-b^{4}=(a-b)\left(a^{3}+a^{2} b+a b^{2}+b^{3}\right) \\
& a^{n}+b^{n} \text { is divisible by }(a+b) \text { when } n \text { is odd } \\
& \quad \text { but by }(a-b) \text { never } \\
& a^{n}-b^{n} \text { is divisible by }(a+b) \text { when } n \text { is even } \\
& \quad \text { and by }(a-b) \text { always }
\end{aligned}
$$

Logarithms

If $N=a^{x}$ then $\log _{a} N=x$ and $N=a^{\log _{a} N}$
$\log (a \times b)=\log a+\log b$
$\log (a \div b)=\log a-\log b$
$\log a^{n}=n \log a$
$\log \sqrt[n]{a}=\frac{1}{n} \log a$
$\log _{a} N=\frac{\log _{b} N}{\log _{b} a}$
$\log _{e} N=2.3026 \times \log _{10} N$
$\log _{a} 1=0$

Arithmetic Progressions

The general form of an AP is
$a, a+d, a+2 d, a+3 d, a+4 d, \ldots \ldots a+(n-1) d$ where
$a=$ the first term
$d=$ the common difference
$n=$ the number of terms
the last term is

$$
l=a+(n-l) d
$$

the total sum of n terms is

$$
S_{n}=n(a+1) \div 2 \text { or } n[2 a+(n-1) d] \div 2
$$

Geometic Progressions

The general form of a GP is
$a, a r, a r^{2}, a r^{3}, a r^{4}, a r^{5}, \ldots \ldots a r^{n-1}$
where
$a=$ the first term
$r=$ the common ratio or multiplier
$n=$ the number of terms
the total sum of n terms is

$$
\begin{array}{ll}
S_{n}=a\left(1-r^{n}\right) \div(1-r) & \text { if } r<1 \\
S_{n}=a\left(r^{n}-1\right) \div(r-1) & \text { if } r>1
\end{array}
$$

if n is infinity and $r^{2}<1$ then

$$
S_{\infty}=a \div(1-r)
$$

The geometric mean of two numbers a and $b=\sqrt{a b}$

Sums of Powers of Natural Numbers

The first n natural numbers are

$$
1,2,3,4,5,6,7,
$$

\qquad n
Their sum when each has been raised to the power r is

$$
\Sigma n^{r}=1^{r}+2^{r}+3^{r}+4^{r}+5^{r}+6^{r}+\ldots \ldots+n^{r}
$$

For any given value of r there is a formula for Σn^{r}
The first six are

$$
\begin{array}{ll}
(r=1) & \sum n=n(n+1) \div 2 \\
(r=2) & \sum n^{2}=n(n+1)(2 n+1) \div 6 \\
(r=3) & \sum n^{3}=n^{2}(n+1)^{2} \div 4 \quad \text { or } \quad\left(\sum n\right)^{2} \\
(r=4) & \sum n^{4}=n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right) \div 30 \\
(r=5) & \sum n^{5}=n^{2}(n+1)^{2}\left(2 n^{2}+2 n-1\right) \div 12 \\
(r=6) & \sum n^{6}=n(n+1)(2 n+1)\left(3 n^{4}+6 n^{3}-3 n+1\right) \div 42
\end{array}
$$

Combinations

Given \boldsymbol{n} different objects and required to choose \boldsymbol{r} at a time, this formula gives the number of ways in which it can be done, neglecting the order in which they are chosen.

$$
{ }^{n} \mathbf{C}_{r}=\frac{n!}{(n-r)!r!}
$$

Given the importance of these numbers in the Binomial Theorem below, they are also known as the Binomial Coefficients. (see Table of Values at the back)

Binomial Theorem

$$
\begin{gathered}
(a+b)^{n}=a^{n}+{ }^{n} \mathrm{C}_{1} a^{n-1} b+{ }^{n} \mathrm{C}_{2} a^{n-2} b^{2}+{ }^{n} \mathrm{C}_{3} a^{n-3} b^{3}+\ldots \\
\ldots+{ }^{n} \mathrm{C}_{r} a^{n-r} b^{r}+\ldots \ldots+b^{n}
\end{gathered}
$$

function $\mathbf{f}(\boldsymbol{x}) \text { or } \boldsymbol{y}=\mathbf{f}(\boldsymbol{x})$	$\begin{gathered} \text { (1st) derivative } \\ \mathbf{f}^{\prime}(\boldsymbol{x}) \text { or } \frac{\boldsymbol{d}}{\boldsymbol{d} \boldsymbol{x}} \mathbf{f}(\boldsymbol{x}) \text { or } \frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}} \end{gathered}$	integral $\int \mathbf{f}(x) d x \text { or } \int y d x$
x^{n}	$n x^{n-1}$	$\frac{1}{n+1} x^{n+1}$
\mathbf{e}^{x}	e^{x}	e^{x}
$\mathrm{e}^{a x}$	$a \mathrm{e}^{a x}$	$\frac{1}{a} \mathrm{e}^{a x}$
\boldsymbol{a}^{x}	$a^{x} \log _{\mathrm{e}} a$	$\frac{1}{\log _{\mathrm{e}} a} a^{x}$
$\log _{e} x$	$\frac{1}{x}$	$x \log _{\mathrm{e}} x-x$
$\frac{1}{x}$	$-\frac{1}{x^{2}}$	$\log _{\mathrm{e}}\|x\|$
$\frac{1}{a^{2}+x^{2}}$		$\frac{1}{a} \tan ^{-1} \frac{x}{a}$
$\frac{1}{a^{2}-x^{2}}$		$\frac{1}{a} \tanh ^{-1} \frac{x}{a}$
$\frac{1}{x^{2}-a^{2}}$		$-\frac{1}{a} \operatorname{coth}^{-1} \frac{x}{a}$
$\frac{1}{\sqrt{a^{2}+x^{2}}}$		$\sinh ^{-1} \frac{x}{a}$
$\frac{1}{\sqrt{x^{2}-a^{2}}}$		$\cosh ^{-1} \frac{x}{a}$
$\sin x$	$\cos x$	$-\cos x$
$\cos x$	$-\sin x$	$\sin x$
$\boldsymbol{t a n} x$	$\sec ^{2} x$	$\log _{\mathrm{e}}\|\sec x\|$
$\sin ^{-1} x$	$\frac{1}{\sqrt{1-x^{2}}}$	
$\cos ^{-1} x$	$-\frac{1}{\sqrt{1-x^{2}}}$	
$\tan ^{-1} x$	$\frac{1}{1+x^{2}}$	

Given that u and v are both functions of x

Product rule

if $y=u \times v$ then $\frac{d y}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x}$
Quotient rule
if $y=u \div v$ then $\frac{d y}{d x}=\left(v \frac{d u}{d x}-u \frac{d v}{d x}\right) \div v^{2}$
Chain rule

$$
\text { if } y \text { is a function of } u \text { then } \frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}
$$

In statistics, when the data content is numerical, it is usual to use the symbol \boldsymbol{x} to represent the general case, and individual pieces of data as $x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} \ldots x_{n}$ Another commonly used symbol is $\boldsymbol{\Sigma}$ (Greek sigma) which means "find the sum of". So a formula containing Σx would mean "add up all the x-numbers", and Σx^{2} would mean "square all the x-numbers and add up all those values". The number of pieces of data is given by n.
If the data is grouped, then f is used to refer to the frequency of the data in each group and that would require a change to some of the formulas given here.

Arithmetic Mean

Generally this is referred to simply as the mean. Symbol is $\overline{\boldsymbol{x}}$
This may be found by
Adding up the values of all the data
Dividing by the number of pieces of data

$$
\text { Expressed as a formula it is } \overline{\boldsymbol{x}}=\frac{\sum x}{n}
$$

Range

is the absolute value of the difference between the greatest and least values of the data.
Expressed as a formula it is

$$
\text { range }=\left|x_{\text {max }}-x_{\text {min }}\right|
$$

Root Mean Square Value

$$
\text { is given by } \sqrt{\frac{\sum x^{2}}{n}}
$$

Standard Deviation

This may be found by
Squaring the values of all the data
Adding them all up
Dividing by how many there are
Subtracting the square of the mean value
Taking the square root.
Symbol is $\boldsymbol{\sigma}$
Expressed as a formula it is $\boldsymbol{\sigma}=\sqrt{\frac{\sum x^{2}}{n}-\overline{\boldsymbol{x}}^{2}}$

Variance

is the square of the Standard Deviation

$$
=\sigma^{2}
$$

χ^{2} (chi-squared) Test

For any particular piece of data, if
\boldsymbol{O} is its Observed frequency and
\boldsymbol{E} is its Expected frequency
then

$$
\chi^{2}=\sum \frac{(O-E)^{2}}{E}
$$

which is the summation carried out over all the groups of the data

Correlation Coefficient

More precisely it is
Pearson's product moment correlation coefficient Symbol is r
When the data is in the form of ordered pairs of numbers such as (x, y) and there are n such pairs, then the amount of correlation between them can be determined by
A. Multiplying the matching x and y values together, adding them all up and multiplying the total by n
B. Adding up all x-values; adding up all y-values; and multiplying the two results together.
C. Subtracting the result of \mathbf{B} from \mathbf{A} (It might be negative)
D. Squaring all x-values, adding them up, multiplying the total by n. Repeating for y-values.
E. Adding together all x-values, and squaring the total. Repeating for y-values.
\mathbf{F}. Subtracting the x-result in \mathbf{E} from that in \mathbf{D} and repeating that for y-result.
G. Multiplying the two answers from \mathbf{F} together and taking the square root.

Then $\boldsymbol{r}=$ result from $\mathbf{C} \div$ result from \mathbf{G}
Expressed as a formula it is

$$
\boldsymbol{r}=\frac{n \sum x y-\sum x \sum y}{\sqrt{\left[n \sum x^{2}-\left(\sum x\right)^{2}\right]\left[n \sum y^{2}-\left(\sum y\right)^{2}\right]}}
$$

Straight Line Formula

When the data is in the form of ordered pairs of numbers such as (x, y) and there is a good degree of correlation between them (as determined above) then it is possible, as well as useful, to draw a straight line which can serve as the basis of further calculations.
The equation for this line will be of the form

$$
y=m x+c
$$

The necessary values of ' m ' and ' c ' can be found from

$$
\mathbf{m}=\frac{n \sum x y-\sum x \sum y}{n \sum x^{2}-\left(\sum x\right)^{2}}
$$

and

$$
\mathbf{c}=\frac{\sum y-\mathrm{m} \sum x}{n}
$$

Rank Order Correlation Coefficient

More precisely it is
Spearman's rank order correlation coefficient Symbol is $\boldsymbol{\rho}$
When two sets of data have been ranked in order by some criteria or other, this coefficient is used to determine how closely the two lists agree (or differ).
Given that there are \boldsymbol{n} items listed, it is found by
Finding the difference in value (by their list order)
of each corresponding pair of rankings.
Squaring all the differences.
Adding the squared values together and multiplying by 6
Dividing the previous result by $\left(n^{3}-n\right)$
Subtracting that from 1

$$
{ }^{n} \mathbf{C}_{r}=\frac{n!}{(n-r)!r!}
$$

	Nのナーイヘmの？	キッツサワ	우두우숭	へポボN	\％${ }_{\text {No }}$ Nop		
F			© $\forall \cong \bar{\sim}$		응요웅ㅇN응 솟ㅇㅇㄱ충 	능욱읏ㅇㅇ Nㅓㅇ융ㅇNN 	 $-\Gamma$
은			© ○先無员 ゅのがゥが			응영워웅 	
0							이엉엉쓩钅 あ
∞	$-\infty \text { セி }$				 숭우융 웅NN우NNN ー～のよに		
N	$-\infty \underset{\sim}{-\infty}$					${ }^{\circ}{ }^{\circ} \mathscr{O}_{0}^{\infty}$ 운인 に ∞ O 0 in ～のナに6	O웅 స్ ∞ 으Nํㄴํ
\bullet			융엉ㅇㅇㅇ ∞ $\infty \underset{\sim}{\sim} \stackrel{\infty}{\sim}$	훙눙웅응 姑只管			N芥茴示 －NへNom
10	－			子尔す。 パN～M 			
＊			ー N ল ল ナ	용용ㅇㅇㅇㅇㅇㅇㅇㅇ 		 	 ロロペのぁ
0		!o	BO: O O O O O		응NN웅ㅇ ～Nのツナ		
N －	－\quad coo			읏ㄸNㅅNㅅㅇㅠ	N్లn¢	－	
		テッツす！	우둥ㅇ웅	Nホ®が	N／～～RM	ハハల్లঙ্ল！	ल⿵⺆⿻二丨冂刂）

N	N^{2}	N^{3}	N^{4}	N^{5}	N^{6}
1	1	1	1	1	1
2	4	8	16	32	64
3	9	27	81	243	729
4	16	64	256	1024	4096
5	25	125	625	3125	15625
6	36	216	1296	7776	46656
7	49	343	2401	16807	117649
8	64	512	4096	32768	262144
9	81	729	6561	59049	531441
10	100	1000	10000	100000	1000000
11	121	1331	14641	161051	1771561
12	144	1728	20736	248832	2985984
13	169	2197	28561	371293	4826809
14	196	2744	38416	537824	7529536
15	225	3375	50625	759375	11390625
16	256	4096	65536	1048576	16777216
17	289	4913	83521	1419857	24137569
18	324	5832	104976	1889568	34012224
19	361	6859	130321	2476099	47045881
20	400	8000	160000	3200000	64000000
21	441	9261	194481	4084101	85766121
22	484	10648	234256	5153632	113379904
23	529	12167	279841	6436343	148035889
24	576	13824	331776	7962624	191102976
25	625	15625	390625	9765625	244140625
26	676	17576	456976	11881376	308915776
27	729	19683	531441	14348907	387420489
28	784	21952	614656	17210368	481890304
29	841	24389	707281	20511149	594823321
30	900	27000	810000	24300000	729000000
31	961	29791	923521	28629151	887503681
32	1024	32768	1048576	33554432	1073741824
33	1089	35937	1185921	39135393	1291467969
34	1156	39304	1336336	45435424	1544804416
35	1225	42875	1500625	52521875	1838265625
36	1296	46656	1679616	60466176	2176782336
37	1369	50653	1874161	69343957	2565726409
38	1444	54872	2085136	79235168	3010936384
39	1521	59319	2313441	90224199	3518743761
40	1600	64000	2560000	102400000	4096000000
41	1681	68921	2825761	115856201	4750104241
42	1764	74088	3111696	130691232	5489031744
43	1849	79507	3418801	147008443	6321363049
44	1936	85184	3748096	164916224	7256313856
45	2025	91125	4100625	184528125	8303765625
46	2116	97336	4477456	205962976	9474296896
47	2209	103823	4879681	229345007	10779215329
48	2304	110592	5308416	254803968	12230590464
49	2401	117649	5764801	282475249	13841287201
50	2500	125000	6250000	312500000	15625000000

$\downarrow^{z \rightarrow}$	0	1	2	3	4	5	6	7	8	9
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0359
0.	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0754
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	22
0.6	0.2258	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2518	0.2549
0.7	0.2580	0.2612	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2996	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.434	0.4357	0.4370	0.4382	0.439	0.4406	0.44	0.4429	. 4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	. 4706
1.9	0.4713	0.471	0.4726	0.4732	0.4738	0.474	0.4750	0.475	0.476	0.47
2.0	0.4772	0.477	0.4783	0.478	0.4793	0.479	0.4803	0.48	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.489	0.4898	0.490	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.492	0.4922	0.49	0.4927	0.49	0.493	0.49	0.49	. 493
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.496	0.4967	0.4968	0.4969	0.497	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.498	0.498	0.498	0.4985	0.4985	0.4986	0
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
3.4	0.4997	0.4997	0.4997	0.499	0.4997	0.4997	0.4997	0.4997	0.4997	0.499
3.5	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998
3.6	0.4998	0.4998	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.7	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.8	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.9	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000

Symbols and Abbreviations

Mathematics uses many symbols and abbreviations to represent instructions, or numbers, in a more concise form. Here, with a brief note as to their meaning, are the ones most commonly used. see also The Greek Alphabet
$+\quad$ add or plus or positive

- minus or subtract or negative
~ find the absolute difference of
\times times or multiplied by
* times or multiplied by
\div divided by
/ divided by
\pm add or subtract plus or minus positive or negative
$=$ equals or is equal to
\neq does not equal $o r$ is not equal to
\approx is approximately equal to
\equiv is equivalent to or has the same value as is identically equal to is congruent to
$<$ is less than
\leqslant is less than or equal to
$>$ is greater than
\geqslant is greater than or equal to
$\propto \quad$ varies as or is proportional to
: proportion
- decimal (or fraction) point
, decimal marker
\% per cent or out of a hundred
\%o per mil or out of a thousand
() brackets or parentheses

〈〉 angle brackets
[] square brackets
\{ \} curly brackets or braces also used to enclose a set
[x] the largest whole number which is not greater than x
$|x|$ the absolute value of x
$x^{2} \quad x$ squared
$x^{3} \quad x$ cubed
$x^{n} \quad x$ to the nth power
\sqrt{x} the square root of x
$\sqrt[3]{x}$ the cube root of x
\angle angle
|| is parallel to
$\nVdash \quad$ is not parallel to
\perp is perpendicular to

- degrees
, minutes
" seconds
\mathbb{N} the set of natural numbers
\mathbb{Z} the set of whole numbers
\mathbb{Q} the set of rational numbers
\mathbb{R} the set of real numbers
\mathbb{C} the set of complex numbers
$\boldsymbol{\in}$ is a member of
\notin is not a member of
\subset is a subset of
$\not \subset$ is not a subset of
\supset includes
\cup union
\cap intersection
\varnothing null or empty set
\Rightarrow implies
\Leftarrow is implied by
\Leftrightarrow implies and is implied by
\therefore therefore
∞ infinity
n ! factorial n
!n sub-factorial or derangements of n
i square root of -1
e $\approx 2.71828 \ldots$
$\pi \approx 3.14159 \ldots$
$\mathbf{f}(x)$ function of x
$\mathbf{f}^{\prime}(x)$ first derivative of $\mathrm{f}(x)$
\int integral or anti-derivative
\& hexadecimal number follows

AP arithmetic progression
APR annual percentage rate
cu cubic (referring to units of volume)
dp decimal places
gcd greatest common denominator
hef highest common factor
lcd lowest common denominator
lcm lowest common multiple
$\boldsymbol{m} \quad$ gradient of a line
mod modulus
QED which was to be proved
sf significant figures
Sq square (referring to units of area)
UT Universal Time (Greenwich Mean Time)

The Greek alphabet is a rich source of symbols used in both mathematics and science, to the extent that nearly every one of them (both capitals and lower case) is used in some way or other. Some of them appear more than once to represent different things. Below is the full alphabet, and the names of the various symbols. The capital form of the letter is given in the first column, followed by the lower case version and its name. Then some of the more commonly seen meanings of usage are given.

A α	alpha	$\alpha \beta \gamma$ are often used to identify angles in plane figures.
B β	beta	
$\Gamma \gamma$	gamma	
$\Delta \delta$	delta	Δ is sometimes used to represent the area of a plane figure. δ is used (in calculus) to show that a small amount is considered.
E ε	epsilon	
Z ζ	zeta	
H η	eta	
$\Theta \theta$	theta	θ is used to indicate a general angle
I 1	iota	
K K	kappa	
$\Lambda \lambda$	lambda	λ is used to represent a scalar in vector work
M μ	mu	μ is used (in the SI system) to represent the prefix micro μ is sometimes used to represent the arithmetic mean
N V	nu	
$\Xi \xi$	xi	ξ is sometimes used as the symbol for the universal set
00	omicron	
$\Pi \pi$	pi	Π is used to show that a continued product is needed π is used to represent the value of the irrational number $3.14159 \ldots$ $\pi(n)$ means the number of primes less than, or equal to n
P ρ	rho	
$\Sigma \sigma$	sigma	Σ is used to show that the sum of a series is to be found σ is used to represent the standard deviation of a population
T τ	tau	τ is used to represent the golden ratio $1.6180 \ldots$ (see also phi)
Y v	upsilon	
$\Phi \phi$	phi	Φ is sometimes used as the symbol for the empty set ϕ is used to represent the golden ratio $1.6180 \ldots$ (see also tau) $\phi(n)$ means the number of positive integers less than, and relatively prime to,
X χ	chi	χ is used in statistics in reference to the chi-squared test
$\Psi \Psi$	psi	
$\Omega \omega$	omega	

