Division

The generally accepted hierarchy of difficulty for the 4 basic operations of arithmetic is (from easiest to hardest): addition, subtraction, multiplication, division. When it is noted how heavily the last is dependent upon the previous two, it is clear why so many (most?) pupils leave school unable to do division without the aid of a calculator.

This unit is not concerned with the actual introduction and teaching of how a division algorithm is carried out but only with providing working material which is structured in a way that progresses very gradually from the very easiest to the quite difficult.

Three assumptions that are made are:

- that pupils are learning to use a 'traditional' division algorithm;
- that pupils do not know their tables, but can use a multiplication table when it is provided;
- that pupils can do subtraction with a good degree of accuracy.

Background

The symbols \div and / are the main ones used to indicate division, so $6 \div 3$ and $6 / 3$ mean the same thing. \div is used in written and printed work, and also on a calculator.
/ is used in computing.
The symbol - as in $\frac{6}{3}$ can be included since that is its ultimate meaning in that situation.
The symbol : was once used to mean division (and \div meant subtraction) but in the mid-1600's English mathematics adopted the symbol we know and use today*. Continental Europe retained (and still uses) : to mean division.
English mathematics retained : in one particular place; using it to show ratio as in $6: 3$ which can be considered as a form of division.

In saying it there are many variations such as (all meaning $6 \div 3$)
"six divided by three"
"six shared by three"
"threes into six"
"how many threes in six?"
and every teacher can add to that list.
The first two are 'better' than the second two since the order of the numbers is maintained and this may go some way to obviating one of the common errors found in later work. But language in the classroom is always a matter of balance between 'correctness' and 'understanding'. No, they are are not mutually exclusive, but too much emphasis on one can result in some loss of the other. Teachers have to be negotiators also.

A commonly-found error is when a pupil has decided that division has to be done and then proceeds to divide the larger number by the smaller regardless of what was actually required. (The same is seen in subtraction.) One has every sympathy with this interpretation, because when you consider how the topic is introduced, and what most (all?) of the practice consists of, it is easy to see how it arises. But that does not make it right. So, one important point that needs to made at some time in any pupil's arithmetic development is that division is NOT commutative.

Addition IS commutative:	$6+3=3+6$	order does NOT matter
Multiplication IS commutative:	$6 \times 3=3 \times 6$	order does NOT matter
Subtraction is NOT commutative:	$6-3 \neq 3-6$	order DOES matter
Division is NOT commutative:	$6 \div 3 \neq 3 \div 6$	order DOES matter
Clearly this is not something to bother about in the beginning, or it will be lost as just one message among many others (information overload) but it must come at some time.		

[^0]
The naming of the parts

In order to detail the structure of the work given on the various sheets, it is necessary to make clear the meanings of the different technical terms used. This is most easily done by labelling all the parts of a typical 'long division' sum. Here the sum being done is

$$
9476 \div 58 \quad \text { (dividend } \div \text { divisor) }
$$

Notice in particular the partial-remainders which are the results of the subtraction sums being done at various stages. These partial-remainders, together with the subtraction sum leading up to them, are important in making an assessment of the overall difficulty of any particular division sum.

Unfortunately, the word 'quotient' has two meanings which overlap.

1. The quotient is the result given by the operation, or process, of division.
In the example above, the quotient is: 163 rem 22
2. The quotient is the whole number part of the result given by the operation, or process, of division. In the example above, the quotient is: 163
(Notice that implicit in definition 2 is the fact that the remainder is not really a whole number but, more properly, is a fractional part. This is seen more clearly if the division is continued after inserting a decimal point in the answer line.)

Of course, these two meanings merge if there is NO remainder. It is suggested that, at the elementary level, the word 'quotient' is not used, but only the word 'answer' which conforms to 'quotient 1 ', and removes the possibility of ambiguity. Should there be a need to refer to the 'whole number part' of the answer, then it could be named in just that way.
The word 'quotient' will not be used in these notes.
The choice of words to be used with pupils must be a matter of discretion and totally dependent upon the environment. For example, 'divisor' is a good short word but, 'the number you are dividing by' is much more user-friendly.

The term 'partial-remainder', as identified above, is introduced here only as a help in dealing with the analysis of the division algorithm in use.

Varieties of Division

'Short' or 'Long’?

The terms 'short division' and 'long division' are often used. This unnecessary and can be confusing.
Leaving aside peripheral distractions of historical methods (the Italian is a favourite) only one basic algorithm is taught in general. How that is handled varies. If the appropriate multiplication table is known and the intermediate subtractions can be done mentally, then the only writing that needs to be done is to record the answer. (Whether the partial-remainders are written in or not is irrelevant.) So the division sum $87934 \div 7$ could look like this

$$
\begin{array}{rrrrrr}
1 & 2 & 5 & 6 & 2 \\
\hline 7 \\
\hline 8 & { }^{1} 7 & { }^{3} 9 & { }^{4} 3 & { }^{1} 4
\end{array}
$$

and it is not unreasonable to class this as 'short division'.
It is in contrast to $9746 \div 58$ (done on the previous page) which is clearly in the class of 'long division'.
However, it must be seen that the algorithm driving both of these sums is the same. It is only in its implementation that the difference arises, and this is entirely dependent upon the knowledge and skills of the user. So the shift from doing 'short division' to doing 'long division' can vary considerably between individuals. To accommodate that it is best if only the word 'division' is used and the techniques of application allowed to arise in their practice.

Types of Division

Dividing one number by another number is simply 'division'.
However, if named quantities are involved then two types of division are recognised.
Partition A partition is a division in which both the dividend and divisor have different names. Quotition A quotition is a division in which the dividend and divisor have the same name.

Examples

$20 \div 5$ is a division

Dividing (or sharing) 20 apples among 5 people is a partition. (20 apples $\div 5$ people) or (apples \div people)
Finding out how many 5 cm lengths can be cut from a piece of string 20 cm long is a quotition.

$$
(20 \mathrm{~cm} \div 5 \mathrm{~cm}) \text { or }(\mathrm{cm} \div \mathrm{cm}) \text { or }(\text { length } \div \text { length })
$$

Does it matter?
For teachers it certainly ought to be known, because it has been observed that when division problems are set in a context, which almost inevitably means using named quantities, quotitions are less easily resolved than partitions - even though the numbers may be the same. In other words, it is not the division process itself which causes the problem, but in first deciding that division is appropriate, and then deciding which has to be divided by what.

Division

The Difficulties

The difficulties in the actual doing of a division sum, even when the algorithm has been properly mastered, arise in two principal areas.

The first is the demands upon knowing, or being able to generate, the appropriate multiplication table, or else having the ability to estimate and try out various multiples of the divisor. To overcome this and encourage practice in the use of the algorithm itself, the work set out in this unit has all of the divisors limited to two digits, and all the multiplication tables from 4 to 99 are supplied. The two master-sheets provided can be copied back-to-back on a single sheet, and there is a wide inner margin so that the sheet can be fitted into a binder. Each pupil should have his or her own sheet. These tables are also available in the form of a small booklet (which has to be made up) and can be found under 'Multiplication Methods' in the trol menu

The second difficulty is the demand for the many subtractions that have to be carried out. There is no easy fix for this, but it must be borne in mind, both in designing the work and in analysing errors. A hierarchy of sums can be identified ranging from the 'very easy' to the 'quite hard'. Some examples of this, are shown below. (Each 3 by 2 block represents a particular subtraction sum.)
259
876
483
358
643
574
407
134
456
274
175
489
268

They are in order of increasing difficulty from left to right. The first is straightforward. The second would need a little extra work if done formally, whichever method is used** but can be done easily by 'counting on'. Now it is not possible to produce many division sums which are limited to having only those two types of subtraction, besides being very unreal in practical terms. So, a few to get started maybe, but most of the work must involve subtractions of increasing difficulty. The message is clear: no pupil should be doing this work who does not have some competence and confidence in subtraction. Note that the partial-remainders can only be used as a first rough guide to assessing the probable order of difficulty of any division sum, but must be used with discretion. Consider,

$$
-\frac{123}{456} \quad-\frac{347}{456}
$$

both produce the same answer (the partial-remainder) but the second is much harder that the first

> ** In formal subtraction sums there are two methods generally in use. One is known as equal addition (this is the one where words like 'borrow' and 'payback' arise) and the other is that of decomposition.

A common mistake is the 'missing zero syndrome'. This arises when, during the course of doing a division sum a point comes where the divisor is smaller that the number that is currently being attempted. To understand how this particular mistake comes about, try the sum

$$
61153154 \div 12
$$

and see how the (wrong) answer 59697 is produced.

Introductory Work

There is a miscellaneous set of tables, printed in a larger type-face. These can be used to make an ohp slide. With this on view, perhaps exposing only the table needed at the time, various examples can be worked through on the board. A possible introductory sequence is outlined below. Only a few examples are given here to illustrate various points. In practice more would be needed, but they are easy to generate, and the small (single-digit) divisors guarantee 'easy' subtractions even if only 'counting-on' is available.

For the earliest work all the dividends could be of sufficient length to help build up the 'rythym' of the algorithm but, with small divisors so all the partial-remainders can be found mentally and, in the beginning, none are zero. A slightly different approach would be to keep the dividends short so that individual sums do not seem tedious and mistakes are more quickly resolved. That would require a different set of examples from those given here, though the stages to be covered would be the same.

$$
589144 \div 4 \quad 7869285 \div 5
$$

Make sure some examples contain a zero or two in the dividend.

$$
6507792 \div 4 \quad 940704 \div 6
$$

Then there is the case where the divisor is bigger than the leading digit of the dividend as in

$$
436974 \div 6 \quad 246883 \div 7
$$

Before doing those a decision must be made. Is a zero to be written (above the $4 \& 2$ respectively) or not? An argument for doing so is that this keeps the rules consistent throughout, that there is no need to treat the leading digits of the dividend differently from the rest and this might go some way towards reducing the 'missing zero syndrome'.

And then turn to those definitely needing a zero in the answer. (With small divisors this means the previous partial-remainder was zero.)

$$
916104 \div 7 \quad 837648 \div 8
$$

There is also a need to have some examples which leave a remainder **
The easiest way of generating these is to take a previous example with a known structure and add on something (less than the divider) to the last digit of the dividend. Of course, if all the fore-going has been absorbed, there should be no need to take any particular care in the construction at this point. Here is one which embodies 'everything'.
$474358305 \div 9$

[^1]
Harder Examples

The move is now made into using bigger divisors.

A decision has to be made at some point concerning the presentation of the algorithm.
When is it to make an appearance in its traditional form? This would be as good a place as any at which to do it. Remember though that it is only a very handy way of organising the work. It could all be done by writing each subtraction sum down on one side as it was needed. Some people work very well like that.
For instance, the sum presented in its full traditional splendour on page 3, under the 'The naming of the parts' could well look like this

$$
5 8 \longdiv { 9 \quad 6 \quad 3 } \begin{array} { r }
{ 1 } \\
{ 9 { } ^ { 0 } 4 { } ^ { 3 6 } 7 { } ^ { 1 9 } 6 }
\end{array} \text { rem22 }
$$

with three small subtraction sums written elsewhere.

This may be undesirable for several reasons, but it is still a valid solution and still using the basic algorithm. The method of application must not be confused with the basic principle of the algorithm.

Assuming the traditional layout is to be used, many will benefit considerably if squared-paper is used as a guide to lining-up the digits.

The first stage is to show that the algorithm is still the same even though the partial-remainders start getting bigger. In the first example below, no partial-remainder is greater than 11. In the second example the biggest partial-remainder is 16 (at the end) and all the subtractions can be classed as easy.

$$
88934762 \div 14 \quad 27957581 \div 23
$$

After that it is a matter of gradually increasing the degree of difficulty of the subtractions to be done. These examples are structured to that end.

$$
\begin{aligned}
& 79989726 \div 34 \\
& 98618986 \div 37 \\
& 73797128 \div 44 \\
& 78188409 \div 53 \\
& 159864056 \div 68 \\
& 655169073 \div 87 \\
& 595910880 \div 96
\end{aligned}
$$

A guide to the Practice Sheets

There are two Practice Sheets containing six Sections, identified as A to F. Each section contains forty division sums

Each of these sections has been wrritten in two parts. One part contains all the oddnumbered sums, the other contains all the even-numbered sums. As far as possible it has been done to produce two parallel sets of questions having the same order of difficulty overall. This allows the work to be assigned in such a way as to minimise the opportunities for collaboration. Assuming pupils are sitting in pairs, then the simple instruction
"Those on the left (nearest the window, or whatever) do the oddnumbered sums, those on the right do the even-numbered sums"
almost guarantees individual work.
It can be useful to inform pupils when remainders are not expected in the final answer, to serve as an indicator as to whether an answer might be correct or not. Whether to do this or not is a local decision. The information is not given on the worksheet.

Section A

Divisors are all single digit (4 to 9) and there are NO remainders throughout this section. Subtractions are of increasing difficulty, within the limits of such small divisors.

Section B

As for Section A except that now MOST (but not quite all) have remainders. Variation here would be to ask only for the value of the remainder to be stated. (There are occasions in mathematics when we do want to know only what the remainder is.)

Section C

All divisors lie in the range 11 to 51 (excluding multiples of 10) and there are NOremainders. Starting with the easiest, the subtraction sums increase in difficulty as progress is made through the section. There is one clear-cut distinction: in the first half nearly all the partialremainders are single-digit; while in the second half they are nearly all two-digit.

Section D

This has the same overall structure as for Section C, except that now MOST (but not quite all) have remainders.

Section E

All divisors lie in the range 52 to 99 (excluding multiples of 10) and there are NO remainders. The subtractions are generally much 'fiercer' and nearly all of the partial-remainders are of the two-digit variety.

Section F

This has the same overall structure as for Section E, except that now ALL the questions generate remainders.

Section A

1. $765 \div 5$
2. $845 \div 5$
3. $528 \div 4$
4. $688 \div 4$
5. $942 \div 6$
6. $870 \div 6$
7. $1296 \div 8$
8. $1176 \div 8$
9. $1855 \div 7$
10. $1666 \div 7$
11. $2376 \div 9$
12. $3186 \div 9$
13. $8442 \div 6$
14. $7818 \div 6$
15. $7035 \div 5$
16. $8025 \div 5$
17. $7532 \div 7$
18. $7476 \div 7$
19. $4288 \div 8$
20. $3584 \div 8$
21. $34756 \div 4$
22. $28965 \div 5$
23. $15894 \div 6$
24. $34756 \div 4$
25. $21637 \div 7$
26. $48568 \div 8$
27. $45963 \div 9$
28. $42654 \div 6$
29. $26352 \div 8$
30. $46186 \div 7$
31. $26352 \div 8$
32. $46186 \div 7$
33. $34643 \div 7$
34. $53824 \div 8$
35. $53790 \div 6$
36. $42822 \div 9$
37. $336623 \div 7$
38. $234522 \div 6$
39. $412101 \div 9$
40. $231111 \div 9$

Section B

1. $739 \div 4$
2. $598 \div 4$
3. $876 \div 5$
4. $985 \div 5$
5. $952 \div 7$
6. $897 \div 7$
7. $874 \div 6$
8. $777 \div 6$
9. $2798 \div 8$
10. $3676 \div 8$
11. $5967 \div 8$
12. $6838 \div 8$
13. $5899 \div 9$
14. $6897 \div 9$
15. $8412 \div 6$
16. $7834 \div 6$
17. $7458 \div 7$
18. $7581 \div 7$
19. $4724 \div 8$
20. $3871 \div 8$
21. $35142 \div 4$
22. $31373 \div 4$
23. $46169 \div 6$
24. $45259 \div 7$
25. $55609 \div 8$
26. $62342 \div 7$
27. $61633 \div 7$
28. $53891 \div 8$
29. $42822 \div 9$
30. $52674 \div 9$
31. $412515 \div 6$
32. $332753 \div 7$
33. $232311 \div 8$
34. $344766 \div 9$
35. $605554 \div 7$
36. $512462 \div 8$
37. $260412 \div 9$
38. $341161 \div 7$
39. $312101 \div 7$
40. $161620 \div 9$

Section C

1. $3894 \div 11$
2. $4983 \div 11$
3. $6768 \div 12$
4. $7836 \div 12$
5. $7448 \div 14$
6. $4956 \div 14$
7. $3795 \div 15$
8. $9480 \div 15$
9. $8384 \div 16$
10. $3856 \div 16$
11. $5848 \div 17$
12. $5525 \div 17$
13. $2250 \div 18$
14. $2412 \div 18$
15. $6156 \div 19$
16. $8246 \div 19$
17. $5166 \div 21$
18. $7287 \div 21$
19. $7498 \div 23$
20. $5451 \div 23$
21. $90376 \div 26$
22. $90192 \div 24$
23. $67581 \div 27$
24. $87783 \div 29$
25. $50176 \div 32$
26. $79577 \div 31$
27. $51084 \div 33$
28. $53346 \div 34$
29. $61128 \div 36$
30. $98013 \div 37$
31. $142155 \div 39$
32. $184870 \div 38$
33. $245028 \div 42$
34. $261252 \div 41$
35. $367349 \div 43$
36. $323752 \div 44$
37. $276828 \div 46$
38. $141893 \div 47$
39. $204357 \div 51$
40. $343147 \div 49$

Section D

1. $2947 \div 12$
2. $1963 \div 12$
3. $4247 \div 13$
4. $8354 \div 13$
5. $8121 \div 15$
6. $5475 \div 15$
7. $4858 \div 14$
8. $9135 \div 14$
9. $4172 \div 17$
10. $7231 \div 17$
11. $7834 \div 18$
12. $9437 \div 18$
13. $4451 \div 19$
14. $2511 \div 19$
15. $7510 \div 22$
16. $9314 \div 22$
17. $8946 \div 21$
18. $7289 \div 21$
19. $4971 \div 23$
20. $9591 \div 23$
21. $39252 \div 24$
22. $70863 \div 26$
23. $69596 \div 28$
24. $87966 \div 27$
25. $59115 \div 32$
26. $85451 \div 29$
27. $70516 \div 34$
28. $81645 \div 33$
29. $53196 \div 37$
30. $60953 \div 36$
31. $518641 \div 38$
32. $715133 \div 39$
33. $715605 \div 42$
34. $854301 \div 41$
35. $688040 \div 44$
36. $711041 \div 43$
37. $285731 \div 47$
38. $369671 \div 46$
39. $211071 \div 49$
40. $494891 \div 51$

Section E

1. $142792 \div 52$
2. $437091 \div 53$
3. $267575 \div 55$
4. $198936 \div 54$
5. $159432 \div 56$
6. $396036 \div 57$
7. $428576 \div 59$
8. $565268 \div 58$
9. $460489 \div 61$
10. $355198 \div 62$
11. $566592 \div 64$
12. $172935 \div 63$
13. $546084 \div 66$
14. $557245 \div 65$
15. $138288 \div 67$
16. $185708 \div 68$
17. $494373 \div 71$
18. $297114 \div 69$
19. $461376 \div 72$
20. $440336 \div 73$
21. $673134 \div 77$
22. $485108 \div 76$
23. $484146 \div 78$
24. $492565 \div 79$
25. $766536 \div 82$
26. $411804 \div 81$
27. $253316 \div 83$
28. $795396 \div 84$
29. $297818 \div 86$
30. $644496 \div 87$
31. $830014 \div 89$
32. $760056 \div 88$
33. $401856 \div 92$
34. $214669 \div 91$
35. $843231 \div 93$
36. $301552 \div 94$
37. $308064 \div 96$
38. $203312 \div 97$
39. $519453 \div 99$
40. $624750 \div 98$

Section F

1. $279558 \div 53$
2. $377807 \div 52$
3. $445675 \div 54$
4. $157536 \div 55$
5. $187894 \div 57$
6. $388783 \div 56$
7. $170894 \div 58$
8. $284661 \div 59$
9. $462038 \div 62$
10. $582085 \div 61$
11. $171713 \div 63$
12. $183845 \div 64$
13. $372152 \div 65$
14. $188382 \div 66$
15. $462623 \div 68$
16. $471371 \div 67$
17. $277811 \div 69$
18. $490191 \div 71$
19. $199784 \div 73$
20. $573384 \div 72$
21. $362022 \div 76$
22. $491624 \div 77$
23. $569381 \div 79$
24. $241585 \div 78$
25. $733411 \div 81$
26. $699523 \div 82$
27. $473836 \div 84$
28. $473791 \div 83$
29. $319743 \div 87$
30. $408165 \div 86$
31. $848021 \div 88$
32. $343340 \div 89$
33. $510383 \div 91$
34. $100903 \div 92$
35. $551866 \div 94$
36. $354033 \div 93$
37. $105253 \div 97$
38. $832413 \div 96$
39. $722151 \div 98$
40. $351132 \div 99$

$14 \times 1=14$
$14 \times 2=28$
$14 \times 3=42$
$14 \times 4=56$
$14 \times 5=70$
$14 \times 6=84$
$14 \times 7=98$
$14 \times 8=112$
$14 \times 9=126$
$37 \times 1=37$
$37 \times 2=74$
$37 \times 3=111$
$37 \times 4=148$
$37 \times 5=185$
$37 \times 6=222$
$37 \times 7=259$
$37 \times 8=296$
$37 \times 9=333$
$68 \times 1=68$
$68 \times 2=136$
$68 \times 3=204$
$68 \times 4=272$
$68 \times 5=340$
$68 \times 6=408$
$68 \times 7=476$
$68 \times 8=544$
$68 \times 9=612$
$23 \times 1=23$
$23 \times 2=46$
$23 \times 3=69$
$23 \times 4=92$
$23 \times 5=115$
$23 \times 6=138$
$23 \times 7=161$
$23 \times 8=184$
$23 \times 9=207$
$44 \times 1=44$
$44 \times 2=88$
$44 \times 3=132$
$44 \times 4=176$
$44 \times 5=220$
$44 \times 6=264$
$44 \times 7=308$
$44 \times 8=352$
$44 \times 9=396$
$87 \times 1=87$
$87 \times 2=174$
$87 \times 3=261$
$87 \times 4=348$
$87 \times 5=435$
$87 \times 6=522$
$87 \times 7=609$
$87 \times 8=696$
$87 \times 9=783$
$34 \times 1=34$
$34 \times 2=68$
$34 \times 3=102$
$34 \times 4=136$
$34 \times 5=170$
$34 \times 6=204$
$34 \times 7=238$
$34 \times 8=272$
$34 \times 9=306$
$53 \times 1=53$
$53 \times 2=106$
$53 \times 3=159$
$53 \times 4=212$
$53 \times 5=265$
$53 \times 6=318$
$53 \times 7=371$
$53 \times 8=424$
$53 \times 9=477$
$96 \times 1=96$
$96 \times 2=192$
$96 \times 3=288$
$96 \times 4=384$
$96 \times 5=480$
$96 \times 6=576$
$96 \times 7=672$
$96 \times 8=768$
$96 \times 9=864$

$4 \times 1=$	4
$4 \times 2=$	8
$4 \times 3=$	12
$4 \times 4=$	16
$4 \times 5=20$	
$4 \times 6=24$	
$4 \times 7=28$	
$4 \times 8=32$	
$4 \times 9=36$	

$10 \times 1=10$ $10 \times 2=20$ $10 \times 3=30$ $10 \times 4=40$ $10 \times 5=50$ $10 \times 6=60$ $10 \times 7=70$ $10 \times 8=80$
$10 \times 9=90$
$16 \times 1=16$ $16 \times 2=32$ $16 \times 3=48$ $16 \times 4=64$ $16 \times 5=80$ $16 \times 6=96$ $16 \times 7=112$ $16 \times 8=128$
$16 \times 9=144$
$5 \times 1=5$
$5 \times 2=10$
$5 \times 3=15$
$5 \times 4=20$
$5 \times 5=25$
$5 \times 6=30$
$5 \times 7=35$
$5 \times 8=40$
$5 \times 9=45$
$11 \times 1=11$ $11 \times 2=22$
$11 \times 3=33$
$11 \times 4=44$
$11 \times 5=55$
$11 \times 6=66$
$11 \times 7=77$
$11 \times 8=88$
$11 \times 9=99$
$17 \times 1=17$ $17 \times 2=$ $17 \times 3=51$ $17 \times 4=68$ $17 \times 5=85$ $17 \times 6=102$ $17 \times 7=119$ $17 \times 8=136$
$17 \times 9=153$
$23 \times 1=23$
$23 \times 2=46$
$23 \times 3=69$
$23 \times 4=92$
$23 \times 5=115$
$23 \times 6=138$
$23 \times 7=161$
$23 \times 8=184$
$23 \times 9=207$

$29 \times 1=$	29
$29 \times 2=$	58
$29 \times 3=$	87
$29 \times 4=$	116
$29 \times 5=145$	
$29 \times 6=174$	
$29 \times 7=203$	
$29 \times 8=232$	
$29 \times 9=$	261

$35 \times 1=35$
$35 \times 2=70$
$35 \times 3=105$
$35 \times 4=140$
$35 \times 5=175$
$35 \times 6=210$
$35 \times 7=245$
$35 \times 8=280$
$35 \times 9=315$

$41 \times 1=$	41
$41 \times 2=82$	
$41 \times 3=123$	
$41 \times 4=164$	
$41 \times 5=205$	
$41 \times 6=246$	
$41 \times 7=287$	
$41 \times 8=328$	
$41 \times 9=369$	

$47 \times 1=47$
$47 \times 2=94$
$47 \times 3=141$
$47 \times 4=188$
$47 \times 5=235$
$47 \times 6=282$
$47 \times 7=329$
$47 \times 8=376$
$47 \times 9=423$

$6 \times 1=6$	$7 \times 1=7$
$6 \times 2=12$	$7 \times 2=14$
$6 \times 3=18$	$7 \times 3=21$
$6 \times 4=24$	$7 \times 4=28$
$6 \times 5=30$	$7 \times 5=35$
$6 \times 6=36$	$7 \times 6=42$
$6 \times 7=42$	$7 \times 7=49$
$6 \times 8=48$	$7 \times 8=56$
$6 \times 9=54$	$7 \times 9=63$

$12 \times 1=12$	$13 \times 1=13$
$12 \times 2=24$	$13 \times 2=26$
$12 \times 3=36$	$13 \times 3=39$
$12 \times 4=48$	$13 \times 4=52$
$12 \times 5=60$	$13 \times 5=65$
$12 \times 6=72$	$13 \times 6=78$
$12 \times 7=84$	$13 \times 7=91$
$12 \times 8=96$	$13 \times 8=104$
$12 \times 9=108$	$13 \times 9=117$

$18 \times 1=18$	$19 \times 1=19$
$18 \times 2=36$	$19 \times 2=38$
$18 \times 3=54$	$19 \times 3=57$
$18 \times 4=72$	$19 \times 4=76$
$18 \times 5=90$	$19 \times 5=95$
$18 \times 6=108$	$19 \times 6=114$
$18 \times 7=126$	$19 \times 7=133$
$18 \times 8=144$	$19 \times 8=152$
$18 \times 9=162$	$19 \times 9=171$

$25 \times 1=25$
$25 \times 2=50$
$25 \times 3=75$
$25 \times 4=100$
$25 \times 5=125$
$25 \times 6=150$
$25 \times 7=175$
$25 \times 8=200$
$25 \times 9=225$
$31 \times 1=31$
$31 \times 2=62$
$31 \times 3=93$
$31 \times 4=124$
$31 \times 5=155$
$31 \times 6=186$
$31 \times 7=217$
$31 \times 8=248$
$31 \times 9=279$
$37 \times 1=37$
$37 \times 2=74$
$37 \times 3=111$
$37 \times 4=148$
$37 \times 5=185$
$37 \times 6=222$
$37 \times 7=259$
$37 \times 8=296$
$37 \times 9=333$
$43 \times 1=43$
$43 \times 2=86$
$43 \times 3=129$
$43 \times 4=172$
$43 \times 5=215$
$43 \times 6=258$
$43 \times 7=301$
$43 \times 8=344$
$43 \times 9=387$
$49 \times 1=49$
$49 \times 2=98$
$49 \times 3=147$
$49 \times 4=196$
$49 \times 5=245$
$49 \times 6=294$
$49 \times 7=343$
$49 \times 8=392$
$49 \times 9=441$
$8 \times 1=8$
$8 \times 2=16$
$8 \times 3=24$
$8 \times 4=32$
$8 \times 5=40$
$8 \times 6=48$
$8 \times 7=56$
$8 \times 8=64$
$8 \times 9=72$
$9 \times 1=9$
$9 \times 2=18$
$9 \times 3=27$
$9 \times 4=36$
$9 \times 5=45$
$9 \times 6=54$
$9 \times 7=63$
$9 \times 8=72$
$9 \times 9=81$
$14 \times 1=14$
$14 \times 2=28$
$14 \times 3=42$
$14 \times 4=56$
$14 \times 5=70$
$14 \times 6=84$
$14 \times 7=98$
$14 \times 8=112$
$14 \times 9=126$
$20 \times 1=20$
$20 \times 2=40$
$20 \times 3=60$
$20 \times 4=80$
$20 \times 5=100$
$20 \times 6=120$
$20 \times 7=140$
$20 \times 8=160$
$20 \times 9=180$
$15 \times 1=15$ $15 \times 2=30$ $15 \times 3=45$ $15 \times 4=60$ $15 \times 5=75$ $15 \times 6=90$ $15 \times 7=105$ $15 \times 8=120$ $15 \times 9=135$
$21 \times 1=21$ $21 \times 2=42$ $21 \times 3=63$ $21 \times 4=84$ $21 \times 5=105$ $21 \times 6=126$ $21 \times 7=147$ $21 \times 8=168$ $21 \times 9=189$
$26 \times 1=26$
$26 \times 2=$
$26 \times 3=$
$26 \times 4=$
$26 \times 5=104$
$26 \times 6=150$
$26 \times 7=182$
$26 \times 8=208$
$26 \times 9=234$
$32 \times 1=$
$27 \times 1=27$ $27 \times 2=54$ $27 \times 3=81$ $27 \times 4=108$ $27 \times 5=135$ $27 \times 6=162$ $27 \times 7=189$ $27 \times 8=216$ $27 \times 9=243$
$33 \times 1=33$ $33 \times 2=66$ $33 \times 3=99$ $33 \times 4=132$
$33 \times 5=165$ $33 \times 6=198$ $33 \times 7=231$
$33 \times 8=264$ $33 \times 9=297$
$39 \times 1=39$ $38 \times 1=38$
$38 \times 2=76$
$38 \times 3=114$
$38 \times 4=152$
$38 \times 5=190$
$38 \times 6=228$
$38 \times 7=266$
$38 \times 8=304$
$38 \times 9=342$ $39 \times 2=78$ $39 \times 3=117$ $39 \times 4=156$ $39 \times 5=195$ $39 \times 6=234$
$39 \times 7=273$ $39 \times 8=312$
$39 \times 9=351$

$44 \times 1=44$	$45 \times 1=45$
$44 \times 2=88$	$45 \times 2=90$
$44 \times 3=132$	$45 \times 3=135$
$44 \times 4=176$	$45 \times 4=180$
$44 \times 5=220$	$45 \times 5=225$
$44 \times 6=264$	$45 \times 6=270$
$44 \times 7=308$	$45 \times 7=315$
$44 \times 8=352$	$45 \times 8=360$
$44 \times 9=396$	$45 \times 9=405$

$50 \times 1=50$	$51 \times 1=51$
$50 \times 2=100$	$51 \times 2=102$
$50 \times 3=150$	$51 \times 3=153$
$50 \times 4=200$	$51 \times 4=204$
$50 \times 5=250$	$51 \times 5=255$
$50 \times 6=300$	$51 \times 6=306$
$50 \times 7=350$	$51 \times 7=357$
$50 \times 8=400$	$51 \times 8=408$
$50 \times 9=450$	$51 \times 9=459$

$52 \times 1=52$
$52 \times 2=104$
$52 \times 3=156$
$52 \times 4=208$
$52 \times 5=260$
$52 \times 6=312$
$52 \times 7=364$
$52 \times 8=416$
$52 \times 9=468$
$58 \times 1=58$ $58 \times 2=116$ $58 \times 3=174$ $58 \times 4=232$ $58 \times 5=290$ $58 \times 6=348$ $58 \times 7=406$ $58 \times 8=464$ $58 \times 9=522$
$64 \times 1=64$ $64 \times 2=128$ $64 \times 3=192$ $64 \times 4=256$ $64 \times 5=320$ $64 \times 6=384$ $64 \times 7=448$ $64 \times 8=512$ $64 \times 9=576$
$53 \times 1=53$
$53 \times 2=106$
$53 \times 3=159$
$53 \times 4=212$
$53 \times 5=265$
$53 \times 6=318$
$53 \times 7=371$
$53 \times 8=424$
$53 \times 9=477$
$59 \times 1=59$ $59 \times 2=118$ $59 \times 3=177$ $59 \times 4=236$ $59 \times 5=295$ $59 \times 6=354$ $59 \times 7=413$
$59 \times 8=472$ $59 \times 9=531$
$65 \times 1=65$ $65 \times 2=130$ $65 \times 3=195$ $65 \times 4=260$ $65 \times 5=325$ $65 \times 6=390$ $65 \times 7=455$ $65 \times 8=520$ $65 \times 9=585$
$54 \times 1=54$
$54 \times 2=108$
$54 \times 3=162$
$54 \times 4=216$
$54 \times 5=270$
$54 \times 6=324$
$54 \times 7=378$
$54 \times 8=432$
$54 \times 9=486$
$55 \times 1=55$
$55 \times 2=110$
$55 \times 3=165$
$55 \times 4=220$
$55 \times 5=275$
$55 \times 6=330$
$55 \times 7=385$
$55 \times 8=440$
$55 \times 9=495$
$60 \times 2=120$ $60 \times 3=180$ $60 \times 4=240$ $60 \times 5=300$ $60 \times 6=360$
$60 \times 7=420$
$60 \times 8=480$
$60 \times 9=540$
$66 \times 1=66$
$66 \times 2=132$
$66 \times 3=198$
$66 \times 4=264$
$66 \times 5=330$
$66 \times 6=396$
$66 \times 7=462$
$66 \times 8=528$
$66 \times 9=594$
$67 \times 1=67$
$67 \times 2=134$
$67 \times 3=201$
$67 \times 4=268$
$67 \times 5=335$
$67 \times 6=402$
$67 \times 7=469$
$67 \times 8=536$
$67 \times 9=603$
$72 \times 1=72$
$72 \times 2=144$
$72 \times 3=216$
$72 \times 4=288$
$72 \times 5=360$
$72 \times 6=432$
$72 \times 7=504$
$72 \times 8=576$
$72 \times 9=648$
$73 \times 1=73$
$73 \times 2=146$
$73 \times 3=219$
$73 \times 4=292$
$73 \times 5=365$
$73 \times 6=438$
$73 \times 7=511$
$73 \times 8=584$
$73 \times 9=657$

79×1	$=79$
79×2	$=158$
79×3	$=237$
79×4	$=316$
79×5	$=395$
79×6	$=474$
79×7	$=553$
79×8	$=632$
79×9	$=711$

$85 \times 1=85$
$85 \times 2=170$
$85 \times 3=255$
$85 \times 4=340$
$85 \times 5=425$
$85 \times 6=510$
$85 \times 7=595$
$85 \times 8=680$
$85 \times 9=765$
$91 \times 1=91$
$91 \times 2=182$
$91 \times 3=273$
$91 \times 4=364$
$91 \times 5=455$
$91 \times 6=546$
$91 \times 7=637$
$91 \times 8=728$
$91 \times 9=819$
$97 \times 1=97$
$97 \times 2=194$
$97 \times 3=291$
$97 \times 4=388$
$97 \times 5=485$
$97 \times 6=582$
$97 \times 7=679$
$97 \times 8=776$
$97 \times 9=873$

$56 \times 1=56$	$57 \times 1=57$
$56 \times 2=112$	$57 \times 2=114$
$56 \times 3=168$	$57 \times 3=171$
$56 \times 4=224$	$57 \times 4=228$
$56 \times 5=280$	$57 \times 5=285$
$56 \times 6=336$	$57 \times 6=342$
$56 \times 7=392$	$57 \times 7=399$
$56 \times 8=448$	$57 \times 8=456$
$56 \times 9=504$	$57 \times 9=513$
$62 \times 1=62$	$63 \times 1=63$
$62 \times 2=124$	$63 \times 2=126$
$62 \times 3=186$	$63 \times 3=189$
$62 \times 4=248$	$63 \times 4=252$
$62 \times 5=310$	$63 \times 5=315$
$62 \times 6=372$	$63 \times 6=378$
$62 \times 7=434$	$63 \times 7=441$
$62 \times 8=496$	$63 \times 8=504$
$62 \times 9=558$	$63 \times 9=567$
$68 \times 1=68$	$69 \times 1=69$
$68 \times 2=136$	$69 \times 2=138$
$68 \times 3=204$	$69 \times 3=207$
$68 \times 4=272$	$69 \times 4=276$
$68 \times 5=340$	$69 \times 5=345$
$68 \times 6=408$	$69 \times 6=414$
$68 \times 7=476$	$69 \times 7=483$
$68 \times 8=544$	$69 \times 8=552$
$68 \times 9=612$	$69 \times 9=621$

$74 \times 1=74$	$75 \times 1=75$
$74 \times 2=148$	$75 \times 2=150$
$74 \times 3=222$	$75 \times 3=225$
$74 \times 4=296$	$75 \times 4=300$
$74 \times 5=370$	$75 \times 5=375$
$74 \times 6=444$	$75 \times 6=450$
$74 \times 7=518$	$75 \times 7=525$
$74 \times 8=592$	$75 \times 8=600$
$74 \times 9=666$	$75 \times 9=675$

$80 \times 1=80$	$81 \times 1=81$
$80 \times 2=160$	$81 \times 2=162$
$80 \times 3=240$	$81 \times 3=243$
$80 \times 4=320$	$81 \times 4=324$
$80 \times 5=400$	$81 \times 5=405$
$80 \times 6=480$	$81 \times 6=486$
$80 \times 7=560$	$81 \times 7=567$
$80 \times 8=640$	$81 \times 8=648$
$80 \times 9=720$	$81 \times 9=729$

$87 \times 1=87$
$87 \times 2=174$
$87 \times 3=261$
$87 \times 4=348$
$87 \times 5=435$
$87 \times 6=522$
$87 \times 7=609$
$87 \times 8=696$
$87 \times 9=783$
$93 \times 1=93$
$93 \times 2=186$
$93 \times 3=279$
$93 \times 4=372$
$93 \times 5=465$
$93 \times 6=558$
$93 \times 7=651$
$93 \times 8=744$
$93 \times 9=837$
$99 \times 1=99$
$99 \times 2=198$
$99 \times 3=297$
$99 \times 4=396$
$99 \times 5=495$
$99 \times 6=594$
$99 \times 7=693$
$99 \times 8=792$
$99 \times 9=891$

In 1866, in the House of Commons in the United Kingdom, a Reform Bill was being debated which was aimed at giving the vote to many hundreds of thousands of men ${ }^{1}$. One of the arguments concerned whether or not the vote should only be given to those who could pass some sort of educational test. The then Chancellor of the Exchequer (William Gladstone) was against this idea and, during the course of his speech, said

> "Putting aside subtraction and multiplication, I should like to know how many of the labouring classes can pass an examination in division of money, or how many members of this house can pass such an examination. If I give the sum of $£ 1,33017 s 6 d$ and tell members of this House to divide it by $£ 213 s 8 d$ I want to know how many would do it."

Mr Hunt: Six hundred and fifty eight. ${ }^{2}$

The Chancellor of the Exchequer: There are not three or four in this House who could do it. I would day there are not thirty or forty, without the least fear of contradiction. I will go further and say it is not necessary that they should; and that they may be admirable members of this House without being able to work such a sum.
Lord Robert Montagu: You cannot divide by $£ 213 s 8 d$. [Laughter]
The Chancellor of the Exchequer: One illustration is better than a thousand arguments. The noble Lord is one of the more promising financial members of the House and he tells us positively that division of money is a thing that cannot be done.

Later, Lord Montagu offered this explanation of what he had really meant:
"With regard to the sum of division which the Right Honourable Gentleman has suggested, it was quite possible to divide the sum of money, but not by money. How could one divide money by $£ 213 s 8 d$? The question might be asked,'How many times 2 shillings will go into $£ 1$?' but that was not dividing by money; it was simply dividing 20 by 2 . He might be asked, 'How many times will $6 s 8 d$ go into a pound?', but that was merely dividing 240 by 80 ."

[^2]
Author's reminiscence

My primary/secondary schooling took place during the period 1935 to 1945, when the use of calculators of any sort was unknown in schools, and all arithmetic was done 'by hand', (logarithms in the later stages). One of my strongest memories of those days is of doing massive sums such as

3 tons 14 cwt 5 stones 9 pounds $\div 3$ cwt 2 stones 4 pounds 5 ounces
and there were similar things for length, area, weight, capacity, as well as money, just like Gladstone's example above. There were also an awful lot of them! I quite liked them, but then I was good at arithmetic, I do not recall my enthusiasm being shared by many of my fellow pupils.
Of course we also did sums where the divisor was a number, but they are a little easier because units are dealt with as they arise and you do not have reduce both to a common unit before starting work on the division. So, I appreciated that partition was 'better' than quotition even if I did not know what they were called.
As usual this had little to do with what happened in the real world. There, the people who had reason to actually need such things used 'Ready Reckoners' of which there hundreds to choose from for all sorts of purposes.

[^0]: * The symbol \div is known as an obelus

 It is a very old symbol but was not used to indicate division until the Swiss mathematician Johann Rahn first did so in 1659.

[^1]: ** Sums requiring a remainder to be found have a useful function in 'defeating' those who will attempt to use a calculator. Very few are capable of working out the remainder on a calculator without some help.
 Try asking for the remainder to $84 \div 37$ and expect the answer 27 (from someone using a calculator)

 An alternative is to give sums where the dividend is more than eight digits long. Most calculators cannot handle that.

[^2]: ${ }^{1}$ This Bill was eventually passed in 1867 giving the vote to about another one-million men, but still excluding many. Reform Bills of later years gradually increased the number of men eligible to vote. Women (after a bitter struggle lasting over 50 years) were finally given the vote in 1918, and then only those over 30 years of age and falling within certain categories. They did not achieve parity with men until 1928. This may be contrasted with New Zealand where women had had the right to vote from 1893, and Australia since 1901.
 ${ }^{2}$ This was the number of MP's in the House of Commons

